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ABSTRACT: 

The emergence, rapid spread, and resurgence of severe acute respiratory syndrome 

coronavirus-2 (SARS-CoV-2) as a potentially fatal disease are considered an alarming situation 

for the worldwide health crises. Treatment is essentially supportive, and the role of antiviral 

agents is yet to be established. Currently, there are few specific antiviral strategies, but several 

potent candidates of antivirals and repurposed drugs are under urgent investigation.  Nature is 

bestowed with potential medicinal plants and the possible drug development based on herbal 

components against the viral receptors is essential for SARS-CoV-2 prevention. In the present 

investigation, Molecular docking was performed to estimate the spatial affinity of target 

compounds for the active sites of Spike glycoprotein with S1 receptor-binding domain, 

angiotension-converting enzyme 2 (ACE2) receptor complexes with spike receptor-binding 

domain, SARS-coronavirus 2 main protease (Mpro), and non-structural protein (Nsp-16) 

receptor of SAR CoV-2. In the present investigation based on the literature survey, a total of 

1378 phytocompounds of 58 ethnomedicinal plants were screened.  The structures of these 

1378 chemical compounds were retrieved from PubChem and ChemSpider online servers 

based on the python web scrapping technique. The retrieved compounds were screened for 

drug-likeliness, ADMET, pharmacokinetic potentials, antiviral properties, and the best 198 

Compounds were obtained. Additionally, the compounds were subjected to pass prediction to 

screen compounds based on antiviral potential. The top-ranked 52 compounds that have 

anchored with key residues located at the binding pocket of the protein were subjected to 

molecular docking employing PyRX. It was observed that all the 52 compounds have aligned 

to the pharmacophore and have demonstrated a higher binding affinity ranging from -14 to -4 

KCal/mol were found to be potent antiviral drug candidates. Compounds such as Nimbidiol, 

Nimbolide (Azadirachta indica), 3R-Claussequinone (Millettia pendula), and Zingiberenol 

(Zingiber officinale) exhibited high-affinity binding energy and reported to possess antioxidant 



and anti-inflammatory potential indeed. Therefore, these compounds could serve as lead 

molecules for further optimization and drug development against all the receptors for SARS-

CoV-2 and related viral receptors. Thus, the present in silico studies regarded as valuable 

towards the exploration and development of a broad-spectrum natural anti-viral therapy.  

Keywords: Sars-Co- V2 receptors, phytoligands, Pharmacokinetic potential, Molecular 

docking, antiviral compounds. 

1. INTRODUCTION: 

The Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute 

respiratory syndrome-coronavirus 2 (SARS-CoV-2). The virus has rapidly spread in humans, 

causing the ongoing Coronavirus pandemic. Recent studies have shown that similarly to 

SARS-Co-V, SARSCoV-2 utilizes the Spike glycoprotein on the envelope to recognize and 

bind the human receptor ACE2. This event initiates the fusion of viral and host cell membranes 

and then the viral entry into the host cell. Despite several ongoing clinical studies, there are 

currently no approved drugs that specifically target SARS-CoV-2. Computer-aided drug 

discovery (CADD) is a fundamental shortcut in the drug discovery area.  CADD tools help to 

identify key molecules, predicting the effectiveness, the possible side effect, and also assist in 

upgrading the drug-likeliness of molecules. (Leelananda SP 2016). From literature, it is known 

that SARS-CoV-2 is a coronavirus that has glycoprotein spikes arranged like a crown. It infects 

its host with three stages. The first stage is the virus infects its host by attaching the 

transmembrane spike glycoprotein to the host through angiotensin-converting enzyme 2 

(ACE2) in the host so that a complex is formed between S-glycoprotein with ACE2. (Shahid 

S.M.A 2018) (Hoffman M 2020). The next stage is the replication stage using RNA-dependent 

RNA polymerase (RdRp). Coronaviruses are RNA viruses that use host cells to replicate. 

Coronavirus uses RdRp to make new RNA copies. The last stage is the maturation stage of 

virus replication in the host cell using proteases such as 3CLpro (3C-like protease) and PLpro 

(Papain-like protease) (Kong R 2020). Hopefully, this research can contribute to the drug 

discovery process for COVID-19 disease. The study focuses on proteins Spike (S) glycoprotein 

the main protease, RNA-dependent RNA-polymerase M Protein (Mpro), and SARS-CoV 

Helicase (NTPase) because of their importance in the viral life cycle. In this study, we 

attempted to employ in silico virtual screening using molecular docking to screen the 

phytochemicals from the ethnomedicinal plants which have the inhibitory ability on proteins 



of SARS-CoV-2 for identification of antiviral therapeutics. There are lots of drug compounds 

that do not pass the drug-likeliness analysis. Efficiency and safety of the drug to the human 

system are the main cause of drug failure which indicates the ADMET properties of molecules 

plays an essential role in every stage of drug discovery and development. Therefore, it is 

necessary to find potent molecules with better ADMET properties. (Guan L 2019). 

Plants have been exploited over the millennia for human welfare in the promotion of health 

and as therapeutic drugs. Most of the developing countries such as China, India, Sri Lanka, 

and a few others endowed with vast resources of medicinal and aromatic plants. Plants being 

rich sources of secondary metabolites such as alkaloids, terpenoids, triterpenes, flavonoids, 

tannins, and phenolic compounds, etc. which are responsible for various biological activities 

have been used as a treatment for various ailments (De Fátima A 2006). Drugs, chemical 

compounds capable of influencing biological systems, have been used to treat human disease 

for thousands of years, mainly in the form of plant extracts. The first demonstrable 

substantiation of plants being used for medicinal purposes developed in Sumeria 5000 years 

ago and was subsequently codified meticulously, predominantly in India and China (Alavijeh 

2005) (Petrovska 2012). As natural product-based drug discovery is associated with some 

intrinsic difficulties, the pharmaceutical industry has shifted its main focus toward synthetic 

compound libraries and high throughput screening (HTS) for the discovery of new drug leads 

(Atanasov 2015). The objective of drug design is to find a chemical compound that can fit a 

specific cavity on a protein target both geometrically and chemically. After passing the animal 

tests and human clinical trials, this compound becomes a drug available to patients. The 

conventional drug design methods include a random screening of chemicals found in nature or 

synthesized in laboratories. The problems with this method are long design cycle and high cost. 

Modern approach including structure-based drug design with the help of informatics 

technologies and computational methods has speeded up the drug discovery process in an 

efficient manner. Remarkable progress has been made during the past five years in almost all 

the areas concerned with drug design and discovery. An improved generation of software with 

easy operation and superior computational tools to generate chemically stable and worthy 

compounds with refinement capability has been developed. These tools can tap into the 

information to shorten the cycle of drug discovery, and thus make drug discovery more 

efficiency, cost-effectiveness, time-saving, and will provide strategies for combination therapy 

in addition to overcoming toxic side effect (Mandal 2009) (Baldi 2010) (V. I. Sharma 2013). 

The term pharmacokinetics describes the fate of compound in the organism during therapeutic 



purpose. In other words, the pharmacokinetics depend upon absorption, distribution, 

metabolism, and excretion (ADME) parameters. According to (Hay M 2014), an early measure 

of ADME in the discovery phase reduced drastically the fraction of pharmacokinetics-related 

failure in the clinical phases. For drug discovery, ADME is an important parameter. 

Bioavailability term describes the extent and rate in which the active moiety (drug or 

metabolite) entered systemic circulation, ultimately accessed the site of action (Le J 1989). An 

in silico approach, especially computational prediction through ADME software is a suitable 

method for faster screening, less time consuming, no animal testing, etc. Among several tools, 

SwissADME online tool is a valid alternative of an experimental drug design from natural 

products or synthetic compounds (M. O. Daina A 2014) (Z. V. Daina A 2016) (B. M.-C. Daina 

A 2017) (M. O. Daina A 7 (2017 a)). This tool helps to find a narrow range of compounds for 

future experimental work on pharmacokinetics; bioavailability, etc. lead to new drug 

development (Puja Tripathi 2019). 

2. METHODS AND IMPLICATIONS 

2.1. ACTIVE SITES PREDICTION OF TARGET PROTEINS 

Binding and active sites of proteins are often associated with structural pockets and cavities. 

We have used the CASTp server (Dundas J. 2006) 

(http://sts.bioe.uic.edu/castp/index.html?2pk9). CASTp server uses the weighted Delaunay 

triangulation and the alpha complex for shape measurements. It provides identification and 

measurements of surface accessible pockets as well as interior inaccessible cavities, for 

proteins and other molecules. It measures analytically the area and volume of each pocket and 

cavity, both in solvent-accessible surface (SA, Richards’ surface) and molecular surface (MS, 

Connolly’s surface). CSA is a database documenting enzyme active sites and catalytic residues 

of enzymes in the 3D structure (Purohit 2008). We performed this analysis for all the five viral 

protein structures individually, to find the binding site of each protein. In CASTp analysis, we 

have chosen the first pocket from the result, based on the area and the volume of the pocket. 

2.2. PROSPECTION OF PHARMACOKINETIC POTENTIAL OF SELECTED 

PHYTOLIGANDS 

2.2.1. SELECTION OF PLANTS AND THEIR PHYTOCOMPOUNDS 



A total of 1378 phytocompounds present in 58 commonly available ethnomedicinal plants viz.,  

Acacia pennata (Aye 2019), Achyranthus aspera (A. T. Sharma 2016), Allium cepa (M. &. 

D’auria 2017), Allium sativum (Prabodh Satyal 2017), Allium Vineale (Prabodh Satyal 2017), 

Alternanthera philoxeroides (A. T. Sharma 2016), Andrographis echioides (Aye 2019), 

Andrographis paniculate (Nv 2017), Avicennia marina (D. G. Kumar 2016), Azadirachta 

indica (Dineshkumar 2015), Bacopa monnieri (Subashri 2014), Camellia sinensis (D. &. 

Gupta 2016), Canthium coromandelicum (Mohan 2014), Carica papaya (Canini 2007)( 

(Ezekwe 2017), Carissa edulis (Fowsiya 2017), Cassia auriculate (Aye 2019), Cinnamomum 

zeylanicum (Jayaprakasha 2003), Croton oblongifolius (Aye 2019), Curcuma longa (Naz 

2010), Dalbergia culrata (Aye 2019), Ensete Superbum (Shivprasad 2018), Erigeron 

bonariensis (A. T. Sharma 2016), Eriosema chinense (Aye 2019) (, Erythrina suberosa (Aye 

2019), Ficus religiosa (Poudel 2015), Glycine max (Xiao 2011), Glycomis pentaphylla (Aye 

2019), Guazuma ulmifolia (Augusti Boligon 2013), Hippophae rhamnoides (Panossian 2013), 

illicium verum (Huang 2010), Justicia gendarussa (Aye 2019), Lantana camara (A. T. Sharma 

2016), Leucas aspera (Ramasamy 2012), Millettia pendula (Aye 2019) , Moringa oleifera 

(Kadhim 2014), Musa acuminate (Mordi 2016), Ocimum sanctum (Awasthi 2007), Oroxylum 

indicum (Shivprasad 2018), Phyllanthus amarus (Adomi 2017), Piper nigrum (Mohammed 

2016), Premna integrifolia (Aye 2019), Punica granatum (Jung 2014), Rumex dentatus (A. T. 

Sharma 2016), Rumex nepalensis (Shrestha 2017), Ruta graveolens (Azalework 2017), 

Sesbania bisp (A. T. Sharma 2016), Sesbania grandiflora (Aye 2019), Smilax zeylanica 

(Shivprasad 2018), Tadehagi treiquetrum (Aye 2019), Terminalia arjuna (D. &. Gupta 2016), 

Terminalia bellerica (R. S. Gupta 2016), tinospora cordifolia (Naik 2014), Vitex trifolia (Aye 

2019), Woodfordia fruticose (Shivprasad 2018), Xanthium strumarium (Fan 2019), 

Zanthoxylum rhetsa (Shivprasad 2018), Zingiber officinale (Singh 2008). obtained from GC-

MS analysis were taken from various authentic research papers and tested for their biological 

activity and pharmacological activity for use as promising therapeutic compounds. The 

structures of these chemical compounds were obtained from online servers viz., PubChem 

(https://pubchem.ncbi.nlm.nih.gov/), and ChemSpider (https://www.chemspider.com/) web 

scraping technique is used for data retrieval. 

2.2.2. WEB SCRAPING USING PYTHON 

After compiling the metabolites from potential entheogenic plants, the next step was to find 

the appropriate canonical smiles for each metabolite. This entire process was automated 



through python scripts designed to web scrape from several databases. The Canonical Smiles 

were scraped from the PubChem database using the PUG Rest Application Programming 

Interface (API). The script queried the name of the metabolites against the PubChem database 

and the obtained results were updated in the appropriated document. The criterion used to 

validate a canonical smile was such that the script will only accept the canonical smile if and 

only if there are no other dissimilar canonical smiles under the same name. The resulting 

document after the script was finished contained a number of missing entries. This either meant 

that the canonical smiles for those metabolites were simply not available in the PubChem 

database or there were multiple canonical smiles obtained and they differed from each other. 

In order to remedy the missing entries, the next database that was scraped was ChEMBL. The 

web scraper queried the ChEMBL API in two ways: first and foremost, a direct query using 

the metabolites name; secondly, if the first attempt failed to furnish any results, the script would 

attempt to find a standard InChI key and use the InChI key to query the database again. 

Furthermore, the already obtained canonical smiles were used to procure a detailed report of 

the molecular weight, how many of the criteria of the Lipinski Rules were satisfied, and other 

necessary information. All of the obtained results were used to update the appropriate 

documents and saved. 

2.2.3. STRUCTURAL RESOURCES 

The proteins from SARS-CoV-2 were selected from literature which is the main protease in 

the apo form [PDB ID: 6M03] (Zhang 2020), The main protease complex with an inhibitor N3 

[PDB ID: 6LU7] (Jin Z 2020), Spike glycoprotein with single receptor-binding domain [PDB 

ID:6VSB] (Wrapp D 2020), SARS protein receptor-binding domain, we have also selected the 

protein from host human cell which is responsible for the host-virus interaction, angiotensin-

converting enzyme 2 (ACE2) receptor complex with spike receptor-binding domain [PDB 

ID:6LZG] (Wang Q 2020) and SARS spike protein receptor-binding domain [PDB ID:2GHV] 

(Hwang WC 2006) The crystal structures were retrieved from RCSB PDB. 

(https://www.rcsb.org). These were used as receptors. 

2.2.4. PREDICTION DRUG-LIKENESS PROPERTIES 

Drug-likeness of a chemical compound is equilibrium amongst the molecular properties of a 

compound which directly affects biological activity, pharmacodynamics, and 



pharmacokinetics of a drug in the human body (Menezes JC 2011). The “drug-likeness” test 

was carried out using Lipinski’s “Rule of Five”, ro5 (Lipinski CA 2012). The distributions of 

the compound molecular weights (MW), calculated lipophilicity (logP), number of hydrogen 

bond acceptors (HBA), and number of hydrogen bond donors (HBD) were used to assess the 

“drug-likeness” of Compounds (Ntie-Kang 2013) Depending on these four molecular 

descriptors, the approach generates a vigilant about apparent absorption trouble; the rule states 

that most “druglike” molecules must have log P≤ 5, molecular weight ≤ 500, number of 

hydrogen bond acceptors ≤ 10, and number of hydrogen bond donors ≤ 5. Molecules violating 

more than one of these rules may have problems with oral bioavailability (Paramashivam SK 

2015). ADMETlab (http://admet.scbdd.com/calcpre/calc_rules/#) drug-likeness analysis 

module is designed for users to filter those chemical compounds that are not likely to be leads 

or drugs. The drug-likeness properties of the compounds were predicted using the ADMETlab 

online server based on the ‘rule-of-five’ given by Lipinski in these which shows the highest 

bandwidth has been selected for further analysis (Dong 2018). 

2.2.5. ADME PROPERTIES PREDICTION 

The predictive study of pharmacokinetics especially ADME, bioavailability, drug-likeness, 

and medicinal chemistry of ligands were carried out by using the SwissADME 

(http://www.swissadme.ch/) online tool developed by (B. M.-C. Daina A 2017) (M. O. Daina 

A 7 (2017 a)). The canonical SMILES string for each chemical was incorporated in this tool 

for the computational simulation. The tool predicts bioavailability radar as per six 

physicochemical properties such as lipophilicity, size, polarity, solubility, flexibility, and 

saturation to detect drug-likeness. The ADME properties viz. passive human gastrointestinal 

absorption (HIA) and blood-brain barrier (BBB) permeation as well as substrate or non-

substrate of the permeability glycoprotein (P-gp) as detected positive or negative in the 

BOILED-Egg model within the tool developed by (Z. V. Daina A 2016) and (B. M.-C. Daina 

A 2017). The estimation of lipophilicity (Log p/w) parameters such as iLOGP was calculated 

for n-octanol and water on free energies of solvation as per the generalized-born and solvent 

accessible surface area (GB/SA) model developed by (M. O. Daina A 2014), XLOGP3 is an 

atomistic method including corrective factors and knowledge-based library developed by 

(Cheng T. 2007), WLOGP has been implemented for a purely atomistic method based on the 

fragment system of (Wildman SA 1999), M-LOGP is an archetype of topological method 

relying on a linear relationship with 13 molecular descriptors implemented as per researchers 



(S. H. Moriguchi I 1992) (S. H. Moriguchi I 1994) and SILICOS-IT is an hybrid method, 

relying on 27 fragments and 7 topological descriptors (M. O. Daina A 7 (2017 a)). The Lipinski 

(Pfizer) filter is the pioneer rule-of-five has been incorporated in this tool from (Lipinski CA 

2012)and this tool has also been inbuilt for the prediction of drug-likeness (M. O. Daina A 7 

(2017 a)). The bioavailability radar for oral bioavailability prediction as per different physico-

chemical parameters has been developed by SwissADME tool (B. M.-C. Daina A 2017) (M. 

O. Daina A 7 (2017 a)). The medicinal chemistry techniques prediction has based on the root 

of structural alert (Brenk R 2008), the pan assay interference compounds or PAINS structural 

alert (Baell JB 2010) or the Lilly MedChem (Bruns RF 2010) filters applied to cleanse 

chemical libraries of compounds most likely unstable, reactive, toxic, or prone to interfere with 

biological assays because unspecific frequent hitters, dyes or aggregators (Irwin JJ 2015). The 

synthetic accessibility (SA) score has based primarily on the assumption that the frequency of 

molecular fragments in ‘really’ obtainable molecules correlates with the ease of synthesis. The 

developed and validated method has been characterized through the molecule synthetic 

accessibility score, which observed between 1 and 10 easy and very difficult to make has been 

described by (S. A. Ertl P 2009). 

2.2.6. TOXICITY PREDICTION 

The predictive study of toxicity studies carried out by using pkCSM: predicting small-molecule 

pharmacokinetic properties using graph-based signatures web server 

(http://biosig.unimelb.edu.au/pkcsm/prediction). pkCSM uses the concept of graph-based 

structural signatures to study and predict a diverse and complementary range of Toxicity 

properties for novel chemical entities like  AMES toxicity, human maximum tolerated dose, 

oral rat acute and chronic toxicity, hERG inhibition, hepatotoxicity, and skin sensitization 

(Pires 2018). Currently, along with a lack of efficacy, toxicity issues are the main reason for 

drug failure. Similar to how the incorporation of ADME screening into the early drug 

development pipeline drastically reduced failures (in the 80s and 90s pharmacokinetic failures 

were a leading cause of drug failures), consideration of toxicity issues early in the drug 

development process can mitigate these issues. Strong electrophiles, and functional groups that 

are prone to the formation of strong electrophilic metabolites, are often toxic and/or mutagenic. 

Chromophores such as quinolines may be phototoxic and lead to skin sensitization. Inhibition 

of human Ether-a-go-go related gene has been linked to the withdrawal of several drugs that 

led to cardiac complications and should be avoided (Pires 2018). Toxicity measurements are 



important to consider relative to the concentration of a compound needed to exert a therapeutic 

effect. This is known as the Therapeutic Index/Window-the ratio of the dose that leads to 

lethality in 50% of the population (Rat LD50 in pkCSM) divided by the minimum effective 

dose for 50% of the population. Larger therapeutic indices are preferable since a much larger 

dose of a drug would need to be administered to reach the toxicity threshold than that needed 

to elicit the therapeutic effect (Pires 2018). 

2.2.7. IN SILICO PREDICTION OF ACTIVITY SPECTRA FOR SUBSTANCES 

(PASS)  

The pharmacological activities of the compounds were predicted individually with the help of 

a computer program, PASS (Predicted Activity Spectrum for Substances) server 

(http://www.pharmaexpert.ru/passonline/) Software estimates the predicted activity spectrum 

of a compound as probable activity (Pa) and probable inactivity (Pi). Prediction of this 

spectrum by PASS was based on structural activity relationship (SAR) analysis of the training 

set containing more than 205,000 compounds having more than 3750 kinds of biological 

activities (Goel 2011). The compounds showing higher Pa value than Pi are the only 

constituents considered as possible for a particular pharmacological activity (Khurana 2011) 

(Goel 2011) This research majorly concentrated on the antiviral activity. 

2.2.8. BIOACTIVITY SCORE PREDICTION 

The predictive study of Bioactivity studies carried out by using the Molinspiration web server. 

Molinspiration supports the internet chemistry community by the calculation of important 

molecular properties such as logP, polar surface area, a number of hydrogen bond donors and 

acceptors, and others, as well as prediction of bioactivity score for the most important drug 

targets like GPCR ligands, kinase inhibitors, ion channel modulators and nuclear receptors (R. 

B. Ertl P 2000). Bioactivity of the drug, can be checked by calculating the activity score of 

GPCR ligand, ion channel modulator, nuclear receptor legend, a kinase inhibitor, protease 

inhibitor, enzyme inhibitor. All the parameters were checked with the help of the software 

Molinspiration drug-likeness score online (www.molinspiration.com). 

2.3. MOLECULAR DOCKING: 

 



PyRx is open source software and it is written in Python programming language and it can run 

on nearly any modern computer, from PC (personal computer) to supercomputer. The binary 

distribution of PyRx version 0.8 for Windows available free from http://pyrx.sourceforge.net. 

Molecular screening of all the compound libraries was performed using PyRx software by 

autodock wizard as the engine for docking (S.Dallakyan 2015. ), (Pagadala NS 2017). During 

the docking period, the ligands were considered to be flexible and the protein was considered 

to be rigid. The configuration file for the grid parameters was generated using the Auto Grid 

engine in Pyrex. The application was also used to know/predict the amino acids in the active 

site of the protein that interact with the ligands. The results of less than 1.0Å in positional root-

mean-square deviation (RMSD) were considered ideal and clustered together for finding the 

favorable binding. The highest binding energy (most negative) was considered as the ligand 

with a maximum binding affinity (Chandel 2020). In this study Autodock vina, the wizard was 

used in the virtual screening of Molecular screening.  

 

3. RESULTS: 

 

Ethnomedicinal plants have medicinal purposes since ancient times and are known for their 

antiviral properties and more tolerable side effects. The novel Coronavirus disease 2019 

(COVID-19) is caused by SARS-CoV-2, which can infect humans and vertebrate animals. The 

outbreak of COVID-19 is wreaking havoc worldwide due to inadequate risk assessment 

regarding the urgency of the situation (Chandel 2020). The infection hampers liver, respiratory, 

central nervous system, and digestive of humans and animals. It has killed 1,122,953 of people 

around the globe with an increase in death rate every single day. 

 

3.1. 1. STRUCTURE RETRIEVAL OF THE TARGET  

 

In our study the three-dimensional protein structures of SARS-CoV-2 were selected. Protein 

targets from literature are the main protease in apo form [PDB ID: 6M03]. The main protease 

complex with an inhibitor N3 [PDB ID: 6LU7]. Spike glycoprotein with single receptor-

binding domain [PDB ID: 6VSB]. SARS protein receptor-binding domain, we have also 

selected the protein from host human cell, which is responsible for the host virus interaction, 

angiotension-converting enzyme 2 (ACE2) receptor complexes with spike receptor-binding 

domain [PDB ID: 6LZG]. SARS spike protein receptor-binding domain [PDB ID: 2GHV]. 



The crystal structures were retrieved from RCSB PDB. (https://www.rcsb.org). These were 

used as receptors. 

3.1.2. RECEPTOR ACTIVE SITE PREDICTION 

 

Active site, amino acid residues of proteins with PDB IDs: 2GHV, 6M03, 6VSB, 6LZG, and 

6LU7 were identified using an online server CASTp tool .The pockets of these five proteins 

are shown in figure 1. 
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Figure 1: CastP images 1)2GHV, 2)6M03, 3)6VSB, 4)6LZG, 5)6LU7 
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3.2. ETHANOMEDICINAL PLANTS RETRIEVAL OF GC-MS LIST FROM 

LITERATURE 

 

From the Literature survey phytochemicals from various ethnomedicinal plants were screened. 

Around 1378 phytochemical compounds were retrieved based on GC-MS data and used for 

our study.  

 

3.2.1.WEB SCRAPING TECHNIQUE USING PYTHON FOR RETRIEVAL OF 

PHYTOCOMPOUNDS STRUCTURE 

 

To retrieve the chemical structure of phytochemicals python web scrapping technique was 

used. Python scraping code was developed for the retrieval of phytochemical compounds from 

the database sources like PubChem, Chembl, and ChemSpider. Out of 1378 phytocompounds 

698 phytocompounds smile structures, Molecular formula , Molecular weight , ID data were 

retrieved. All the required data sets retrieved from web scrapping using python and 

authenticated. The code for python web scraping is depicted in the picture. 

 

 
  



 

 
Fig.2. Molecular chemical structure retrieving through the python web scraping 

method. 

 

3.2.2. DRUGLIKLINESS TEST PREDICTION USING ADMETLAB WEB SERVER 

Our study shows 52 phytocompounds passes all Druglikliness, ADMET properties in 

acceptable ranges were selected. Out of 57 plants, 30 plants have one or the other 52 



phytocompounds and the lists of plants for compounds are represented in Table1. Preliminarily 

screening of all the 649 phytocompounds was subjected to the ADMETlab web server for drug-

likeness analysis. Around 410 phytocompounds passed the Lipinski rule of 5 with a 100% 

width score and no violation of pharmacological property.  Based on drug-likeness, 52 

phytocompounds could be identified as promising drug lead in the early stage of drug 

discovery [ listed in Table 2]. 

TABLE 1: LIST OF PHYTOCHEMICAL COMPOUNDS SELECTED BASED 
ON DRUGLIKLINESS  TEST. 

Sl.No Plants name Phytocompounds lists with respect to plants 

1 Achyranthes 
aspera Patchouli alcohol 

2 Andrographis 
Paniculata  1-hexyl-2-nitrocyclohexane 

3 Avicennia marina nonanoic acid 

4 Azadirachta 
indica Nimbidiol, Nimbolide 

5 Bacopa monnieri 2,4-Quinolinediol 

6 Canthium 
coromandelicum Ethyl iso-allocholate 

7 Carica papaya Caffeic acid, p-Coumaric acid, Protocatechuic 
acid 

8 Carissa edulis gamma-eudesmol 

9 Cinnamomum 
zeylanicum 

10-epi-eudesmol, Cadinol, Cubenol, Globulol, 
Spathulenol 

10 Croton 
oblongifolius Furanocembranoid 3 

11 Erythrina 
suberosa Millettilone A, 3R-Claussequinone 

12 Ficus religiosa Cadinol 
13 Glycine max nonanoic acid 

14 Guazuma 
ulmifolia 

Cubenol, Spathulenol, Butylated 
hydroxytoluene, Globulol 

15 Hippophae 
rhamnoides Caffeic acid, gallic acid 

16 Lantana camara  Glaucyl alcohol 

17 Leucas aspera (E,E)-farnesol, nerolidol, nonanoic acid, 
decanoic acid 

18 Millettia pendula  3R-Claussequinone, Millettilone A, Pendulone 
19 Moringa oleifera Methyl 2,4,6-trihydroxybenzoate  
20 Ocimum sanctum Cadinol, cis-Sesquisabinene hydrate, nerolidol 

21 Piper nigrum 
2-Pinen-4-ol, Cedr-8-en-13-ol, Cedr-8-en-15-ol, 
exo-2-Hydroxycineole acetate, Santalol, 
Spathulenol 

22 Rumex nepalensis 7-hydroxy-2,5-dimethyl 4H-1-Benzopyran-4-
one  



Sl.No Plants name Phytocompounds lists with respect to plants 
23 Ruta graveolens Acetic acid, dec-2-yl ester:, Ficusin,Isopsoralen 

24 Sesbania 
bispinosa  

Benzenepropanoic acid, 3,5-bis(1,1-
dimethylethyl)-4-hydroxy-, methyl ester: 
Glaucic acid,  

25 Sesbania 
grandiflora nonanoic acid 

26 Tadehagi 
treiquetrum  Dihydroechioidinin 

27 Terminalia arjuna Cadinol, Globulol, 2,4-ditert-butylphenol  

28 Tinospora 
cordifolia Berberine 

29 Xanthium 
strumarium 

(-)-simulanol, Caffeic acid, Protocatechuic acid, 
scopoletin, sibirolide A, sibirolide B, caffeic 
acid ethyl ester, formononetin, inusoniolide 

30 Zingiber officinale nerolidol, Zingiberenol, Beta-eudesmol, Guaiol 

 
 
 
 
 
 
TABLE 2: ADMETLAB PROPERTY OF SCEEREND PHYTOCHEMICAL 

Sl.n
o COMPOUNDS MW HB

A 
HB
D logP R

B Tpsa Score% 

1 (-)-simulanol 388.41
6 7 3 2.63

3 7 97.6
1 

width:100.0%
; 

2 (E,E)-farnesol 222.37
2 1 1 4.39

8 7 20.2
3 

width:100.0%
; 

3 10-epi-eudesmol 222.37
2 1 1 3.92 1 20.2

3 
width:100.0%

; 

4 1-hexyl-2-
nitrocyclohexane 

213.32
1 2 0 3.79

2 6 43.1
4 

width:100.0%
; 

5 2,4-ditert-
butylphenol 

206.32
9 1 1 3.98

7 2 20.2
3 

width:100.0%
; 

6 2,4-Quinolinediol 161.16 2 2 1.23
4 0 53.0

9 
width:100.0%

; 

7 2-Pinen-4-ol 152.23
7 1 1 1.97 0 20.2

3 
width:100.0%

; 

8 3R-
Claussequinone 

286.28
3 5 1 1.55

2 2 72.8
3 

width:100.0%
; 

9 
7-hydroxy-2,5-
dimethyl 4H-1-

Benzopyran-4-one 

190.19
8 3 1 2.11

5 0 50.4
4 

width:100.0%
; 

10 Acetic acid, dec-2-
yl ester 

200.32
2 2 0 3.68

9 9 26.3 width:100.0%
; 



Sl.n
o COMPOUNDS MW HB

A 
HB
D logP R

B Tpsa Score% 

11 

Benzenepropanoic 
acid, 3,5-bis(1,1-
dimethylethyl)-4-
hydroxy-, methyl 

ester 

292.41
9 3 1 4.09

3 6 46.5
3 

width:100.0%
; 

12 Berberine 336.36
7 4 0 3.09

6 2 40.8 width:100.0%
; 

13 Beta-eudesmol 222.37
2 1 1 3.92 1 20.2

3 
width:100.0%

; 

14 Butylated 
hydroxytoluene 

220.35
6 1 1 4.29

6 2 20.2
3 

width:100.0%
; 

15 Cadinol 222.37
2 1 1 3.77

6 1 20.2
3 

width:100.0%
; 

16 Caffeic acid 180.15
9 3 3 1.19

6 2 77.7
6 

width:100.0%
; 

17 caffeic acid ethyl 
ester 

208.21
3 4 2 1.67

4 4 66.7
6 

width:100.0%
; 

18 Cedr-8-en-13-ol 220.35
6 1 1 3.38

7 1 20.2
3 

width:100.0%
; 

19 Cedr-8-en-15-ol 220.35
6 1 1 3.38

7 1 20.2
3 

width:100.0%
; 

20 
cis-

Sesquisabinene 
hydrate 

222.37
2 1 1 3.92 4 20.2

3 
width:100.0%

; 

21 Cubenol 222.37
2 1 1 3.77

6 1 20.2
3 

width:100.0%
; 

22 decanoic acid 172.26
8 1 1 3.21

2 8 37.3 width:100.0%
; 

23 Dihydroechioidini
n 

286.28
3 5 2 2.81

3 2 75.9
9 

width:100.0%
; 

24 Ethyl iso-
allocholate 

436.63
3 5 3 3.92

7 6 86.9
9 

width:100.0%
; 

25 
exo-2-

Hydroxycineole 
acetate 

212.28
9 3 0 2.28

6 2 35.5
3 

width:100.0%
; 

26 Ficusin 186.16
6 3 0 2.53

9 0 43.3
5 

width:100.0%
; 

27 formononetin 268.26
8 4 1 3.17

4 2 59.6
7 

width:100.0%
; 

28 Furanocembranoid 
3 

336.47
2 4 3 3.24 1 73.8

3 
width:100.0%

; 

29 gallic acid 170.12 4 4 0.50
2 1 97.9

9 
width:100.0%

; 

30 gamma-eudesmol 222.37
2 1 1 4.06

4 1 20.2
3 

width:100.0%
; 

31 Glaucic acid 234.33
9 1 1 3.79 2 37.3 width:100.0%

; 



Sl.n
o COMPOUNDS MW HB

A 
HB
D logP R

B Tpsa Score% 

32 Glaucyl alcohol 220.35
6 1 1 3.69

8 2 20.2
3 

width:100.0%
; 

33 Globulol 222.37
2 1 1 3.46

6 0 20.2
3 

width:100.0%
; 

34 Guaiol 222.37
2 1 1 3.92 1 20.2

3 
width:100.0%

; 

35 inusoniolide 250.33
8 3 0 2.89 4 43.3

7 
width:100.0%

; 

36 Isopsoralen 186.16
6 3 0 2.53

9 0 43.3
5 

width:100.0%
; 

37 
Methyl 2,4,6-

trihydroxybenzoat
e 

184.14
7 5 3 0.59 2 86.9

9 
width:100.0%

; 

38 Millettilone A 316.30
9 6 1 1.69

7 3 82.0
6 

width:100.0%
; 

39 nerolidol 222.37
2 1 1 4.39

6 7 20.2
3 

width:100.0%
; 

40 Nimbidiol 274.36 3 2 3.76
8 0 57.5

3 
width:100.0%

; 

41 Nimbolide 466.53 7 0 3.74
3 4 92.0

4 
width:100.0%

; 

42 nonanoic acid 158.24
1 1 1 2.82

2 7 37.3 width:100.0%
; 

43 Patchouli alcohol 222.37
2 1 1 3.61 0 20.2

3 
width:100.0%

; 

44 p-Coumaric acid 164.16 2 2 1.49 2 57.5
3 

width:100.0%
; 

45 Pendulone 316.30
9 6 1 1.52

6 3 82.0
6 

width:100.0%
; 

46 Protocatechuic 
acid 

154.12
1 3 3 0.79

6 1 77.7
6 

width:100.0%
; 

47 Santalol 220.35
6 1 1 3.69

8 4 20.2
3 

width:100.0%
; 

48 scopoletin 192.17 4 1 1.50
7 1 59.6

7 
width:100.0%

; 

49 sibirolide A 244.29 3 0 2.02
9 0 43.3

7 
width:100.0%

; 

50 sibirolide B 244.29 3 1 1.94
6 0 46.5

3 
width:100.0%

; 

51 Spathulenol 220.35
6 1 1 3.38

6 0 20.2
3 

width:100.0%
; 

52 Zingiberenol 222.37
2 1 1 4.08

6 4 20.2
3 

width:100.0%
; 

 
 
 



3.2.4. ADME TEST PREDICTION USING SWISS ADME WEB SERVER 

 

The ADME test was carried out in the SWISS ADME web server for all the 410 

phytocompounds and screened to 198 phytocompounds based on the following criteria. The 

results on predictive data for pharmacokinetics, bioavailability, drug-likeness, and medicinal 

chemistry friendliness were established for major 52 phytocompounds listed in Table 3. For 

pharmacokinetics prediction, the gastrointestinal (GI) absorption rate was obtained and all 52 

phytocompounds were showing high absorption. The blood-brain permeability was observed 

as Yes or No, permeation as well as substrate or non-substrate of the permeability glycoprotein 

(P-gp) as yes or no. CYP1A2 inhibitor, CYP2C19 inhibitor, CYP2C9 inhibitor, CYP2D6 

inhibitor, CYP3A4 inhibitor all the inhibitors are showed as Yes or No. Skin Permeability log 

Kp (cm/s) more the negative value means the less permeability. 

 
TABLE 3: PHARMACOKINETICS PREDICTION OF PHYTOLIGANDS 

Sl.
no 

COMPO
UNDS 

GI 
absor
ption 

BBBpe
rmeant 

Pgp 
subs
trate 

CY
P1A

2 
inhi
bito

r 

CYP
2C19 
inhib
itor 

CY
P2C

9 
inhi
bito

r 

CY
P2D

6 
inhi
bito

r 

CY
P3A

4 
inhi
bito

r 

Skin 
Permi
ability 
log Kp 
(cm/s) 

1 (-)-
simulanol High No Yes No No No Yes No -7.33 

2 (E,E)-
farnesol High Yes No Yes No Yes No No -3.81 

3 10-epi-
eudesmol High Yes No No No No No No -5.17 

4 
1-hexyl-2-
nitrocyclo

hexane 
High Yes No No No No No No -4.21 

5 
2,4-ditert-
butylphen

ol 
High Yes No No No No Yes No -3.87 

6 
2,4-

Quinoline
diol 

High Yes No Yes No No No No -6.79 

7 2-Pinen-
4-ol High Yes No No No No No No -4.99 

8 
3R-

Claussequ
inone 

High No No Yes No No No No -6.9 



Sl.
no 

COMPO
UNDS 

GI 
absor
ption 

BBBpe
rmeant 

Pgp 
subs
trate 

CY
P1A

2 
inhi
bito

r 

CYP
2C19 
inhib
itor 

CY
P2C

9 
inhi
bito

r 

CY
P2D

6 
inhi
bito

r 

CY
P3A

4 
inhi
bito

r 

Skin 
Permi
ability 
log Kp 
(cm/s) 

9 

7-
hydroxy-

2,5-
dimethyl 

4H-1-
Benzopyr
an-4-one 

High Yes No Yes No No No No -6.09 

10 
Acetic 

acid, dec-
2-yl ester 

High Yes No No No No No No -4.32 

11 

Benzenep
ropanoic 
acid, 3,5-
bis(1,1-

dimethyle
thyl)-4-

hydroxy-, 
methyl 
ester 

High Yes No No No No Yes No -4.66 

12 Berberine High Yes Yes Yes No No Yes Yes -5.78 

13 Beta-
eudesmol High Yes No No No Yes No No -5 

14 
Butylated 
hydroxyto

luene 
High Yes No No No No Yes No -4.02 

15 Cadinol High Yes No No Yes No No No -5.29 

16 Caffeic 
acid High No No No No No No No -6.58 

17 
caffeic 

acid ethyl 
ester 

High Yes No No No No No No -5.75 

18 Cedr-8-
en-13-ol High Yes No No No Yes No No -5.24 

19 Cedr-8-
en-15-ol High Yes No No No Yes No No -5.25 

20 

cis-
Sesquisab

inene 
hydrate 

High Yes No No Yes Yes No No -4.76 

21 Cubenol High Yes No No Yes Yes No No -5.03 

22 decanoic 
acid High Yes No No No No No No -4.45 



Sl.
no 

COMPO
UNDS 

GI 
absor
ption 

BBBpe
rmeant 

Pgp 
subs
trate 

CY
P1A

2 
inhi
bito

r 

CYP
2C19 
inhib
itor 

CY
P2C

9 
inhi
bito

r 

CY
P2D

6 
inhi
bito

r 

CY
P3A

4 
inhi
bito

r 

Skin 
Permi
ability 
log Kp 
(cm/s) 

23 Dihydroec
hioidinin High Yes No Yes Yes No No Yes -5.96 

24 
Ethyl iso-
allocholat

e 
High No Yes No No No No No -7.04 

25 

exo-2-
Hydroxyc

ineole 
acetate 

High Yes No No No No No No -6.33 

26 Ficusin High Yes No Yes No No No No -6.25 

27 formonon
etin High Yes No Yes No No Yes Yes -5.95 

28 
Furanoce
mbranoid 

3 
High Yes Yes No No No Yes No -6.15 

29 gallic acid High No No No No No No Yes -6.84 

30 gamma-
eudesmol High Yes No No No No No No -5.25 

31 Glaucic 
acid High Yes No No No Yes No No -5.4 

32 Glaucyl 
alcohol High Yes No No Yes Yes No No -5.28 

33 Globulol High Yes No No Yes No No No -5 
34 Guaiol High Yes No No No No No No -5.48 

35 inusonioli
de High Yes No No No No No No -6.26 

36 Isopsorale
n High Yes No Yes No No No No -5.96 

37 

Methyl 
2,4,6-

trihydroxy
benzoate 

High No No No No No No No -6.53 

38 Millettilo
ne A High No No No No No No No -7.48 

39 nerolidol High Yes No Yes No Yes No No -4.23 
40 Nimbidiol High Yes Yes No No No Yes No -5.03 

41 Nimbolid
e High No Yes No No No No No -7.61 

42 nonanoic 
acid High Yes No No No No No No -4.84 

43 Patchouli 
alcohol High Yes No No No Yes No No -4.78 



Sl.
no 

COMPO
UNDS 

GI 
absor
ption 

BBBpe
rmeant 

Pgp 
subs
trate 

CY
P1A

2 
inhi
bito

r 

CYP
2C19 
inhib
itor 

CY
P2C

9 
inhi
bito

r 

CY
P2D

6 
inhi
bito

r 

CY
P3A

4 
inhi
bito

r 

Skin 
Permi
ability 
log Kp 
(cm/s) 

44 
p-

Coumaric 
acid 

High Yes No No No No No No -6.26 

45 Pendulone High No No Yes No No No No -6.95 

46 Protocatec
huic acid High No No No No No No Yes -6.42 

47 Santalol High Yes No No Yes Yes No No -4.14 
48 scopoletin High Yes No Yes No No No No -6.39 

49 sibirolide 
A High Yes No No No No No No -6.8 

50 sibirolide 
B High Yes No No No No No No -6.97 

51 Spathulen
ol High Yes No No Yes No No No -5.44 

52 Zingibere
nol High Yes No No No Yes No No -4.63 

 

3.2.5. BIOAVAILABILITY PREDICTION USING SWISS ADME WEB SERVER 

The bioavailability predictions of 52 phytocompounds are listed in Table 4: Bioavailability 

Scores of all 52 phytocompounds in the range of 0.55 to 0.85; which is a good range of score 

for bioavailability. Water solubility LogS of all 52 phytocompounds are less than -10 and water 

solubility class are in the range of soluble, moderate soluble, very soluble were selected. The 

lipophilicity of all the 52 phytocompounds; iLOGP, XLOGP3, WLOGP, MLOGP, Silicos-IT 

LogP should be less than 5 to qualify the prediction.  It was observed that the G-Protein 

Coupled Receptor activity ranges from -1.11 to -0.344; Kinase inhibitor activity ranges from - 

84 to 0.05; Protease inhibitor activity ranges from -1.25 to -0.23, and the enzyme inhibitors 

activity are from -0.37 to 0.82 for the designed compounds was obtained.  The bioactivity score 

based on the Molinspiration study for all the 52 compounds were between 0.00 and -0.50. 

Nearly 98% of the molecule were presumed to have bioactivity scores between -0.50 to 0.00 

are expected to be moderately active, 2% of compounds exhibit good bioactive potential. 

TABLE 4: BIOAVAILABILITY PREDICTION OF PHYTOLIGANDS COMPARED 
TO SYNTHETIC LIGANDS 



Sl.
no 

COMPOU
NDS 

Bioavaila
bility 
Score 

Wate
r 

solub
ility 

LogS 

water 
solubil

ity 
Class 

iLO
GP 

XLO
GP3 

WLO
GP 

MLO
GP 

Silic
os-
IT 

Log
P 

1 (-)-
simulanol 0.55 -3.29 Solubl

e 3.09 1.88 2.2 0.78 3.23 

2 (E,E)-
farnesol  0.55 -4.17 

Moder
ately 
soluble 

3.71 5.42 4.4 3.86 4.21 

3 10-epi-
eudesmol 0.55 -3.36 Solubl

e 3.18 3.5 3.92 3.67 3.35 

4 
1-hexyl-2-
nitrocyclohe
xane 

0.55 -3.77 Solubl
e 2.79 4.77 3.79 2.35 1.58 

5 2,4-ditert-
butylphenol  0.55 -4.55 

Moder
ately 
soluble 

3.08 5.19 3.99 3.87 3.81 

6 
2,4-
Quinolinedi
ol 

0.55 -1.9 Very 
soluble 1.13 0.7 1.23 1.04 2.1 

7 2-Pinen-4-ol 0.55 -2.77 Solubl
e 2.26 3.16 1.97 2.3 1.86 

8 
3R-
Claussequin
one 

0.85 -2.71 Solubl
e 1.99 1.62 1.55 0.42 2.4 

9 

7-hydroxy-
2,5-
dimethyl 
4H-1-
Benzopyran
-4-one  

0.55 -2.76 Solubl
e 1.91 1.93 2.12 0.82 2.88 

10 
Acetic acid, 
dec-2-yl 
ester 

0.55 -3.33 Solubl
e 3.51 4.51 3.69 3.15 3.48 

11 

Benzenepro
panoic acid, 
3,5-bis(1,1-
dimethyleth
yl)-4-
hydroxy-, 
methyl ester 

0.55 -4.5 
Moder
ately 
soluble 

3.75 4.82 4.09 3.77 4.69 

12 Berberine 0.55 -4.55 
Moder
ately 
soluble 

0 3.62 3.1 2.19 3.74 

13 Beta-
eudesmol 0.55 -3.51 Solubl

e 3.11 3.74 3.92 3.67 3.64 



Sl.
no 

COMPOU
NDS 

Bioavaila
bility 
Score 

Wate
r 

solub
ility 

LogS 

water 
solubil

ity 
Class 

iLO
GP 

XLO
GP3 

WLO
GP 

MLO
GP 

Silic
os-
IT 

Log
P 

14 
Butylated 
hydroxytolu
ene 

0.55 -4.56 
Moder
ately 
soluble 

3.33 5.1 4.3 4.12 4.34 

15 Cadinol 0.55 -3.26 Solubl
e 3.15 3.34 3.78 3.67 3.22 

16 Caffeic acid 0.56 -1.89 Very 
soluble 0.97 1.15 1.09 0.7 0.75 

17 caffeic acid 
ethyl ester 0.55 -2.78 Solubl

e 2.04 2.56 1.57 1.3 1.64 

18 Cedr-8-en-
13-ol 0.55 -3.28 Solubl

e 2.94 3.39 3.39 3.67 3.27 

19 Cedr-8-en-
15-ol 0.55 -3.26 Solubl

e 2.9 3.37 3.39 3.67 3.27 

20 
cis-
Sesquisabin
ene hydrate 

0.55 -3.53 Solubl
e 3.37 4.08 3.92 3.67 4.01 

21 Cubenol 0.55 -3.48 Solubl
e 3.24 3.7 3.78 3.67 3.22 

22 decanoic 
acid 0.85 -2.96 Solubl

e 2.5 4.09 3.21 2.58 2.63 

23 Dihydroechi
oidinin 0.55 -3.76 Solubl

e 2.35 2.94 2.49 0.96 2.57 

24 Ethyl iso-
allocholate 0.55 -3.86 Solubl

e 4.03 2.71 3.93 3.46 3.49 

25 
exo-2-
Hydroxycin
eole acetate 

0.55 -2.15 Solubl
e 2.82 1.78 2.29 1.88 2.32 

26 Ficusin 0.55 -2.73 Solubl
e 2.01 1.67 2.54 1.48 2.91 

27 formononeti
n 0.55 -3.73 Solubl

e 2.49 2.8 3.17 1.33 3.52 

28 Furanocemb
ranoid 3 0.55 -3.97 Solubl

e 2.98 3.1 3.24 1.95 2.88 

29 gallic acid 0.56 -1.64 Very 
soluble 0.21 0.7 0.5 -0.16 -0.2 

30 gamma-
eudesmol 0.55 -3.29 Solubl

e 3.12 3.39 4.06 3.67 3.75 

31 Glaucic acid 0.85 -3.23 Solubl
e 2.68 3.28 3.79 3.35 3.05 

32 Glaucyl 
alcohol 0.55 -3.17 Solubl

e 3.11 3.33 3.7 3.56 3.51 

33 Globulol 0.55 -3.57 Solubl
e 3.08 3.74 3.47 3.81 3 



Sl.
no 

COMPOU
NDS 

Bioavaila
bility 
Score 

Wate
r 

solub
ility 

LogS 

water 
solubil

ity 
Class 

iLO
GP 

XLO
GP3 

WLO
GP 

MLO
GP 

Silic
os-
IT 

Log
P 

34 Guaiol 0.55 -3.09 Solubl
e 3.29 3.07 3.92 3.67 3.35 

35 inusoniolide 0.55 -2.52 Solubl
e 2.51 2.21 2.89 2.47 3.14 

36 Isopsoralen 0.55 -2.99 Solubl
e 2.03 2.08 2.54 1.48 2.91 

37 

Methyl 
2,4,6-
trihydroxyb
enzoate  

0.55 -1.99 Very 
soluble 1.19 1.26 0.59 0.18 0.28 

38 Millettilone 
A 0.56 -2.46 Solubl

e 2.25 1.05 1.37 -0.15 2.02 

39 nerolidol 0.55 -3.8 Solubl
e 3.64 4.83 4.4 3.86 4.21 

40 Nimbidiol 0.55 -4.37 
Moder
ately 
soluble 

2.14 4.14 3.77 2.59 3.59 

41 Nimbolide 0.55 -3.94 Solubl
e 3.51 2.17 3.74 2.28 3.83 

42 nonanoic 
acid 0.85 -2.51 Solubl

e 2.3 3.42 2.82 2.28 2.2 

43 Patchouli 
alcohol 0.55 -3.77 Solubl

e 2.96 4.05 3.61 3.81 3.4 

44 p-Coumaric 
acid 0.85 -2.02 Solubl

e 0.95 1.46 1.38 1.28 1.22 

45 Pendulone 0.56 -2.93 Solubl
e 2.4 1.8 1.53 -0.15 2.42 

46 Protocatech
uic acid 0.56 -1.86 Very 

soluble 0.66 1.15 0.8 0.4 0.26 

47 Santalol 0.55 -4.05 
Moder
ately 
soluble 

3.15 4.94 3.7 3.56 3.95 

48 scopoletin 0.55 -2.46 Solubl
e 1.86 1.53 1.51 0.76 1.94 

49 sibirolide A 0.55 -2.24 Solubl
e 2.34 1.4 2.03 2.38 2.91 

50 sibirolide B 0.55 -2.09 Solubl
e 2.58 1.16 1.95 2.38 2.31 

51 Spathulenol 0.55 -3.17 Solubl
e 2.88 3.11 3.39 3.67 3.27 

52 Zingibereno
l 0.55 -3.64 Solubl

e 3.39 4.26 4.09 3.56 3.61 

 



3.2.6. MEDICINAL CHEMISTRY PREDICTION USING SWISS ADME WEB 

SERVER 

 

Medicinal chemistry predictions of all the 52 phytocompounds are in Table 5. The pan assay 

interference compounds, or PAINS most likely unstable, reactive, toxic alerts and BRENK 

filter which is based on root structural alert were checked. Leadlikliness violation alert also 

predicted more the violation less Leadlikliness. Molecule synthetic accessibility score, which 

observed between 1, is easy and 10 is very difficult. 

 

TABLE 5: MEDICINAL CHEMISTRY PREDICTION OF PHYTOLIGANDS 
COMPARED TO SYNTHETIC LIGANDS 

 

Sl.no COMPOUNDS PAINS 
#alerts 

Brenk 
#alerts 

Leadlikeness 
#violations 

Synthetic 
Accessibility 

1 (-)-simulanol 0 0 1 4.25 
2 (E,E)-farnesol  0 1 2 3.17 
3 10-epi-eudesmol 0 1 1 4.08 
4 1-hexyl-2-nitrocyclohexane 0 2 2 3.39 
5 2,4-ditert-butylphenol  0 0 2 1.43 
6 2,4-Quinolinediol 0 0 1 1.51 
7 2-Pinen-4-ol 0 1 1 4.47 
8 3R-Claussequinone 1 1 0 3.51 

9 7-hydroxy-2,5-dimethyl 4H-1-
Benzopyran-4-one  0 0 1 2.64 

10 Acetic acid, dec-2-yl ester 0 0 3 2.48 

11 
Benzenepropanoic acid, 3,5-
bis(1,1-dimethylethyl)-4-
hydroxy-, methyl ester 

0 0 1 2.13 

12 Berberine 0 1 1 3.14 
13 Beta-eudesmol 0 1 2 3.38 
14 Butylated hydroxytoluene 0 0 2 1.48 
15 Cadinol 0 1 1 4.29 
16 Caffeic acid 1 2 1 1.81 
17 caffeic acid ethyl ester 1 2 1 2.2 
18 Cedr-8-en-13-ol 0 1 1 5.44 
19 Cedr-8-en-15-ol 0 1 1 5.32 
20 cis-Sesquisabinene hydrate 0 1 2 3.82 
21 Cubenol 0 1 2 4.34 
22 decanoic acid 0 0 3 1.67 
23 Dihydroechioidinin 0 0 0 3.14 



Sl.no COMPOUNDS PAINS 
#alerts 

Brenk 
#alerts 

Leadlikeness 
#violations 

Synthetic 
Accessibility 

24 Ethyl iso-allocholate 0 0 1 5.39 
25 exo-2-Hydroxycineole acetate 0 0 1 4.28 
26 Ficusin 0 1 1 3.06 
27 formononetin 0 0 0 2.81 
28 Furanocembranoid 3 0 1 0 6.27 
29 gallic acid 1 1 1 1.22 
30 gamma-eudesmol 0 1 1 3.88 
31 Glaucic acid 0 2 1 4.28 
32 Glaucyl alcohol 0 1 1 4.48 
33 Globulol 0 0 2 3.58 
34 Guaiol 0 1 1 4.48 
35 inusoniolide 0 2 0 4.21 
36 Isopsoralen 0 1 1 3.07 

37 Methyl 2,4,6-
trihydroxybenzoate  0 0 1 1.4 

38 Millettilone A 1 1 0 3.9 
39 nerolidol 0 1 2 3.53 
40 Nimbidiol 1 1 1 3.13 
41 Nimbolide 0 2 1 6.07 
42 nonanoic acid 0 0 1 1.57 
43 Patchouli alcohol 0 0 2 3.73 
44 p-Coumaric acid 0 1 1 1.61 
45 Pendulone 1 1 0 3.67 
46 Protocatechuic acid 1 1 1 1.07 
47 Santalol 0 1 2 4.52 
48 scopoletin 0 1 1 2.62 
49 sibirolide A 0 1 1 4.37 
50 sibirolide B 0 1 1 4.78 
51 Spathulenol 0 1 1 3.78 
52 Zingiberenol 0 1 2 4.15 

 

 

3.2.7. TOXICITY TEST USING PKCSM WEB SERVER 

 

Meanwhile, the toxicity of 198 phytocompounds is tested using pkCSM: predicting small-

molecule pharmacokinetic properties using graph-based signatures web server. Similarly, 52 

phytocompounds were predicted as good compounds out of 198 phytocompounds and listed 

in Table 6:  AMES /Toxicity in 52 phytocompounds shows non-mutagenic. Max. tolerated 

dose (human) less than or equal to 0.477 log(mg/kg/day) is considered to be low and high if 



greater than 0.477 log(mg/kg/day) in these all 52 phytocompounds comes in the lower range. 

To determine whether hERG I inhibitor and hERG II inhibitor present or not, and in these 52 

phytocoumpounds hERG I and hERG II inhibitor is absent. Oral Rat Acute Toxicity (LD50) 

the lethal dosage values (LD50) are a standard measurement of acute toxicity used to assess 

the relative toxicity in mol/kg. Oral Rat Chronic Toxicity (LOAEL) results need to be 

interpreted relative to the bioactive concentrations and were predicted. Hepatotoxicity, it 

predicts whether a given compound is likely to be associated with the disrupted normal 

function of the liver. Skin Sensitisation of some phytocompounds is likely to be associated 

with skin sensitisation. T.Pyriformis toxicity > -0.5 log µg/L. Minnow toxicity a logLC50 

predicted LC50 values below 0.5 mM if (log LC50 < - 0.3) are regarded as high acute toxicity. 

This toxicity analysis makes a good selection of drugs-based suitability for further study of 

drug discovery. 

 
TABLE 3.2.7 : TOXICITY ANALYSIS OF THE SCREENED COMPOUNDS 

Sl 
N
o 

Compound 

A
M
E
S 
to
xi
cit
y 

Max. 
toler
ated 
dose 
(hum
an) 

h
E
R
G 
I 
in
hi
bit
or 

h
E
R
G 
II 
in
hi
bit
or 

Ora
l 

Rat 
Acu
te 

Tox
icity 
(LD
50) 

Ora
l 

Rat 
Chr
onic 
Tox
icity 
(LO
AE
L) 

Hep
atot
oxic
ity 

Skin 
Sensit
isatio

n 

T.Pyr
iform

is 
toxici

ty 

Mi
nno
w 

toxi
city 

1 (-)-simulanol N
o 0.196 N

o 
N
o 

2.22
2 

1.77
9 No No 0.464 1.0

34 

2 (E,E)-farnesol N
o 0.096 N

o 
N
o 

1.55
8 

1.20
8 No Yes 2.328 0.1 

3 10-epi-
eudesmol 

N
o 0.131 N

o 
N
o 1.68 1.23

1 No Yes 1.522 0.8
19 

4 
1-hexyl-2-

nitrocyclohexa
ne 

N
o 0.079 N

o 
N
o 

2.32
6 1.09 No Yes 2.045 0.1

99 

5 2,4-ditert-
butylphenol 

N
o 0.11 N

o 
N
o 

2.32
1 

1.41
4 No Yes 0.969 

-
0.5
71 

6 2,4-
Quinolinediol 

N
o 0.308 N

o 
N
o 

2.11
5 

1.79
4 No No 0.456 1.2

78 

7 2-Pinen-4-ol N
o 0.325 N

o 
N
o 2.11 1.84

4 No Yes 0.359 1.6
29 



Sl 
N
o 

Compound 

A
M
E
S 
to
xi
cit
y 

Max. 
toler
ated 
dose 
(hum
an) 

h
E
R
G 
I 
in
hi
bit
or 

h
E
R
G 
II 
in
hi
bit
or 

Ora
l 

Rat 
Acu
te 

Tox
icity 
(LD
50) 

Ora
l 

Rat 
Chr
onic 
Tox
icity 
(LO
AE
L) 

Hep
atot
oxic
ity 

Skin 
Sensit
isatio

n 

T.Pyr
iform

is 
toxici

ty 

Mi
nno
w 

toxi
city 

8 
3R-

Claussequinon
e 

N
o 

-
0.125 

N
o 

N
o 2 1.28

8 No No 0.408 1.4
4 

9 

7-hydroxy-2,5-
dimethyl 4H-1-
Benzopyran-4-

one 

N
o 0.285 N

o 
N
o 

2.15
4 2.41 No No 0.662 1.2

57 

10 Acetic acid, 
dec-2-yl ester 

N
o 0.417 N

o 
N
o 

1.72
7 

2.49
3 No Yes 1.496 0.1

9 

11 

Benzenepropan
oic acid, 3,5-

bis(1,1-
dimethylethyl)-

4-hydroxy-, 
methyl ester 

N
o 

-
0.412 

N
o 

N
o 

2.31
5 

1.91
2 No No 0.704 

-
1.8
12 

12 Berberine N
o 

-
0.132 

N
o 

N
o 

3.31
3 

1.27
5 No No 0.288 

-
0.8
69 

13 Beta-eudesmol N
o 

-
0.371 

N
o 

N
o 

1.69
7 

1.27
1 No Yes 1.79 0.5

9 

14 Butylated 
hydroxytoluene 

N
o 0.256 N

o 
N
o 

2.58
6 

1.38
7 No Yes 1.017 

-
0.3
81 

15 Cadinol N
o 0.164 N

o 
N
o 

1.96
3 

1.40
9 No Yes 1.36 0.9

17 

16 Caffeic acid N
o 

-
0.106 

N
o 

N
o 

2.42
2 

1.64
6 No No 0.023 2.2

2 

17 caffeic acid 
ethyl ester 

N
o 

-
0.172 

N
o 

N
o 

2.06
9 

1.57
4 No No 0.511 1.5

07 

18 Cedr-8-en-13-
ol 

N
o 0.021 N

o 
N
o 

1.72
6 

1.19
8 No Yes 1.476 0.7

24 

19 Cedr-8-en-15-
ol 

N
o 

-
0.054 

N
o 

N
o 

1.68
3 

1.20
6 No Yes 1.474 0.7

26 

20 
cis-

Sesquisabinene 
hydrate 

N
o 0.055 N

o 
N
o 

1.62
7 

1.20
3 No Yes 1.769 0.5

31 

21 Cubenol N
o 0.354 N

o 
N
o 

2.08
4 

1.47
2 No Yes 1.301 0.7

41 



Sl 
N
o 

Compound 

A
M
E
S 
to
xi
cit
y 

Max. 
toler
ated 
dose 
(hum
an) 

h
E
R
G 
I 
in
hi
bit
or 

h
E
R
G 
II 
in
hi
bit
or 

Ora
l 

Rat 
Acu
te 

Tox
icity 
(LD
50) 

Ora
l 

Rat 
Chr
onic 
Tox
icity 
(LO
AE
L) 

Hep
atot
oxic
ity 

Skin 
Sensit
isatio

n 

T.Pyr
iform

is 
toxici

ty 

Mi
nno
w 

toxi
city 

22 decanoic acid N
o 

-
0.059 

N
o 

N
o 

1.53
3 2.75 No Yes 0.701 0.4

8 

23 Dihydroechioid
inin 

N
o 

-
0.294 

N
o 

N
o 

2.33
2 

1.64
7 No No 0.365 1.8

93 

24 Ethyl iso-
allocholate 

N
o 

-
1.461 

N
o 

N
o 

3.03
3 

0.10
5 No No 0.337 0.4

17 

25 
exo-2-

Hydroxycineol
e acetate 

N
o 0.418 N

o 
N
o 

2.20
2 1.69 No Yes -0.009 1.9

34 

26 Ficusin N
o 

-
0.543 

N
o 

N
o 

1.80
6 1.05 No No 0.63 0.8

23 

27 formononetin N
o 0.008 N

o 
N
o 

1.94
6 1.17 No No 0.637 0.0

41 

28 Furanocembran
oid 3 

N
o 0.451 N

o 
N
o 

2.46
9 

1.56
2 No No 0.578 1.5

19 

29 gallic acid N
o 

-
0.335 

N
o 

N
o 

2.08
7 

2.37
2 No No -0.107 2.8

42 

30 gamma-
eudesmol 

N
o 0.055 N

o 
N
o 

1.68
1 

1.24
9 No Yes 1.524 0.8

42 

31 Glaucic acid N
o 0.047 N

o 
N
o 

1.96
5 

2.21
9 No Yes 0.297 0.7

21 

32 Glaucyl 
alcohol 

N
o 0.351 N

o 
N
o 

1.71
4 

1.21
3 No Yes 1.395 0.8

77 

33 Globulol N
o 

-
0.193 

N
o 

N
o 

1.61
5 

1.18
7 No Yes 1.369 1.0

63 

34 Guaiol N
o 0.445 N

o 
N
o 

1.78
9 

1.21
2 No Yes 1.254 0.9

06 

35 inusoniolide N
o 0.193 N

o 
N
o 1.76 1.84

1 No Yes 0.918 0.8
33 

36 Isopsoralen N
o 

-
0.448 

N
o 

N
o 

2.61
6 

1.06
1 No No 0.673 0.9

78 

37 
Methyl 2,4,6-

trihydroxybenz
oate 

N
o 0.072 N

o 
N
o 

1.67
9 

2.66
5 No No 0.237 2.0

65 

38 Millettilone A N
o 

-
0.278 

N
o 

N
o 

2.27
5 

1.95
3 No No 0.471 2.6

38 

39 nerolidol N
o 0.245 N

o 
N
o 

1.59
7 

1.17
8 No Yes 2.285 0.1

85 



Sl 
N
o 

Compound 

A
M
E
S 
to
xi
cit
y 

Max. 
toler
ated 
dose 
(hum
an) 

h
E
R
G 
I 
in
hi
bit
or 

h
E
R
G 
II 
in
hi
bit
or 

Ora
l 

Rat 
Acu
te 

Tox
icity 
(LD
50) 

Ora
l 

Rat 
Chr
onic 
Tox
icity 
(LO
AE
L) 

Hep
atot
oxic
ity 

Skin 
Sensit
isatio

n 

T.Pyr
iform

is 
toxici

ty 

Mi
nno
w 

toxi
city 

40 Nimbidiol N
o 

-
0.639 

N
o 

N
o 

2.43
3 

1.86
4 No No 1.729 0.4

69 

41 Nimbolide N
o 

-
0.178 

N
o 

N
o 

2.78
7 1.96 No No 0.292 0.5

44 

42 nonanoic acid N
o 0.1 N

o 
N
o 1.54 2.68 No Yes 0.499 0.7

62 

43 Patchouli 
alcohol 

N
o 0.014 N

o 
N
o 

1.74
7 

1.22
9 No Yes 1.058 0.8

51 

44 p-Coumaric 
acid 

N
o 0.446 N

o 
N
o 

2.40
2 

1.84
7 No No 0.183 1.9

63 

45 Pendulone N
o 

-
0.032 

N
o 

N
o 

2.17
5 

1.26
9 No No 0.348 0.9

92 

46 Protocatechuic 
acid 

N
o 

-
0.025 

N
o 

N
o 

2.12
2 

2.00
5 No No -0.258 2.3

58 

47 Santalol N
o 

-
0.025 

N
o 

N
o 

2.12
2 

2.00
5 No No -0.258 2.3

58 

48 scopoletin N
o 

-
0.051 

N
o 

N
o 

1.63
6 

1.28
1 No Yes 2.015 0.1

47 

49 sibirolide A N
o 0.292 N

o 
N
o 

2.01
2 

1.42
4 No No 0.453 1.6

04 

50 sibirolide B N
o 0.017 N

o 
N
o 

1.64
8 2.32 No No 0.634 1.2

52 

51 Spathulenol N
o 

-
0.538 

N
o 

N
o 

2.04
2 

2.43
5 No No 0.775 1.3

99 

52 Zingiberenol N
o 0.055 N

o 
N
o 

1.62
7 

1.20
3 No Yes 1.769 0.5

31 

 

3.2.8.PREDICTION OF PHARMACOLOGICAL POTENTIAL USING PASS SERVER 

 

The pharmacological effects and Antiviral activities of 52 phytocompounds were analyzed 

through PASS (Prediction of activity spectra for substances) online server; the values of Pa 

and Pi vary between 0.000 and 1.000. Only activities with Pa > Pi are considered as possible 

for a particular compound. If Pa > 0.7, the probability of experimental pharmacological action 

is high and if 0.5 < Pa < 0.7, probability of experimental pharmacological action is less. The 

tested phytocompounds shows many pharmacological activities and Antiviral activities. All 



the 52 phytocompounds show good activities and the criteria considered as Pa > 0.6  and a few 

of those potential compounds were listed in Table 7. 

 

TABLE 7: PASS PREDICTION ALL 52 COMPOUNDS HAVE ANTIVIRAL 
PROPERTY FILTERED TABLE WERE PA > 0.6 

Sl.no Compound name Pa Pi Activity 
1 (E,E)-farnesol  0,766 0,001 Antiviral (Rhinovirus) 
2 nerolidol 0,765 0,001 Antiviral (Rhinovirus) 
3 Ethyl iso-allocholate 0,747 0,004 Antiviral (Influenza) 
4 Nimbidiol 0,694 0,006 Antiviral (Influenza) 
5 decanoic acid 0,671 0,008 Antiviral (Picornavirus) 
6 nonanoic acid 0,671 0,008 Antiviral (Picornavirus) 
7 Patchouli alcohol 0,668 0,008 Antiviral (Influenza) 
8 Acetic acid, dec-2-yl ester 0,658 0,004 Antiviral (Rhinovirus) 
9 1-hexyl-2-nitrocyclohexane 0,656 0,010 Antiviral (Picornavirus) 
10 gallic acid 0,654 0,009 Antiviral (Influenza) 
11 Zingiberenol 0,651 0,004 Antiviral (Rhinovirus) 
12 cis-Sesquisabinene hydrate 0,626 0,005 Antiviral (Rhinovirus) 
13 Protocatechuic acid 0,610 0,012 Antiviral (Influenza) 
14 Dihydroechioidinin 0,607 0,013 Antiviral (Influenza) 

 

3.2.9. PREDICTION OF BIOACTIVITY SCORE  

The bioactivity scores were predicted using molinspiration tool (www.molinspiration.com ) 

for the most important drug targets (GPCR ligands, kinase inhibitors, ion channel modulators, 

enzymes, and nuclear receptors) and the Drug likeliness property of 52 phytocompounds 

against these targets was depicted in Table 8. The compound having a bioactivity score of more 

than 0.00 is likely to possess considerable biological activities, values -0.50 to 0.00 are 

expected to be moderately active and if the score is less than -0.50, it is presumed to be inactive 

(Paramashivam SK 2015). Hence from the evaluated scores, one can say that all the 52 

phytocompounds having bioactivity scores in acceptable ranges. 

 

TABLE 8: BIOACTIVITY SCORES OF PHYTOCOMPOUNDS PREDICTED BY 
MOLINSPIRATION. 



Sl 
No 

Compoun
d 

GPC
R 

LIGA
ND 

ION 
CHANNE

L 
MODULA

TOR 

KINASE 
INHIBI

TOR 

NUCLE
AR 

RECEP
TOR 

LIGAN
D 

PROTE
ASE 

INHIBI
TOR 

ENZYM
E 

INHIBI
TOR 

1 (-)-
simulanol 0.34 -0.04 -0.12 0.11 -0.18 0.47 

2 (E,E)-
farnesol  -0.13 0.22 -0.6 0.2 -0.43 0.42 

3 10-epi-
eudesmol 0.03 0.37 -0.63 0.55 -0.11 0.5 

4 
1-hexyl-2-
nitrocycloh
exane 

-0.48 0.09 -0.78 -0.56 -0.49 -0.08 

5 
2,4-ditert-
butylpheno
l  

-0.37 0.05 -0.51 -0.07 -0.64 -0.07 

6 
2,4-
Quinolined
iol 

-0.72 -0.18 -0.46 -0.87 -1.17 -0.08 

7 2-Pinen-4-
ol -0.18 0.03 -1.42 -0.17 -0.54 0.02 

8 
3R-
Claussequi
none 

-0.48 -0.19 0.05 -0.07 -0.38 0.28 

9 

7-hydroxy-
2,5-
dimethyl 
4H-1-
Benzopyra
n-4-one  

-1.11 -0.79 -1.16 -0.56 -1.25 -0.32 

10 
Acetic 
acid, dec-2-
yl ester 

-0.53 -0.13 -0.85 -0.39 -0.51 -0.08 

11 

Benzenepr
opanoic 
acid, 3,5-
bis(1,1-
dimethylet
hyl)-4-
hydroxy-, 
methyl 
ester 

0.07 0.09 -0.22 0.35 -0.04 0.15 

12 Berberine -0.11 0.71 -0.27 -0.78 -0.35 0.82 

13 Beta-
eudesmol -0.02 0.43 -0.62 0.6 -0.1 0.48 



Sl 
No 

Compoun
d 

GPC
R 

LIGA
ND 

ION 
CHANNE

L 
MODULA

TOR 

KINASE 
INHIBI

TOR 

NUCLE
AR 

RECEP
TOR 

LIGAN
D 

PROTE
ASE 

INHIBI
TOR 

ENZYM
E 

INHIBI
TOR 

14 
Butylated 
hydroxytol
uene 

-0.34 0 -0.48 -0.08 -0.57 -0.07 

15 Cadinol -0.09 0.05 -0.87 0.39 -0.63 0.4 

16 Caffeic 
acid -0.48 -0.23 -0.81 -0.1 -0.79 -0.09 

17 caffeic acid 
ethyl ester -0.59 -0.29 -0.78 -0.18 -0.71 -0.22 

18 Cedr-8-en-
13-ol -0.18 -0.01 -0.7 0.34 -0.48 0.55 

19 Cedr-8-en-
15-ol -0.12 -0.07 -0.65 0.12 -0.54 0.54 

20 

cis-
Sesquisabi
nene 
hydrate 

-0.12 0.12 -0.63 0.31 -0.04 0.22 

21 Cubenol -0.17 0.41 -0.69 0.11 -0.48 0.27 

22 decanoic 
acid -0.46 -0.14 -1.03 -0.45 -0.56 -0.07 

23 Dihydroech
ioidinin 0.01 -0.27 -0.3 0.31 -0.13 0.15 

24 Ethyl iso-
allocholate 0.17 0.21 -0.38 0.65 0.18 0.58 

25 

exo-2-
Hydroxyci
neole 
acetate 

-0.39 0.45 -0.94 -0.24 -0.29 0.48 

26 Ficusin -0.89 -0.38 -1.1 -1.13 -1.19 -0.37 

27 formononet
in -0.3 -0.69 -0.19 0.05 -0.8 -0.02 

28 Furanocem
branoid 3 0.27 0.06 -0.24 0.58 0.23 0.31 

29 gallic acid -0.77 -0.26 -0.88 -0.52 -0.94 -0.17 

30 gamma-
eudesmol -0.29 0.2 -0.81 0.53 -0.32 0.4 

31 Glaucic 
acid -0.16 -0.2 -0.95 0.29 -0.22 0.12 

32 Glaucyl 
alcohol -0.31 -0.4 -84 0.09 -0.38 0.05 

33 Globulol -0.5 -0.29 -0.82 -0.22 -0.48 -0.13 
34 Guaiol -0.21 -0.13 -0.89 0.17 -0.17 0.07 

35 inusoniolid
e 0.06 -0.12 -0.68 0.44 0.06 0.33 



Sl 
No 

Compoun
d 

GPC
R 

LIGA
ND 

ION 
CHANNE

L 
MODULA

TOR 

KINASE 
INHIBI

TOR 

NUCLE
AR 

RECEP
TOR 

LIGAN
D 

PROTE
ASE 

INHIBI
TOR 

ENZYM
E 

INHIBI
TOR 

36 Isopsoralen -0.87 -0.48 -0.88 -0.93 -1.15 -0.28 

37 

Methyl 
2,4,6-
trihydroxyb
enzoate  

-0.85 -0.46 -0.96 -0.71 -1.03 -0.34 

38 Millettilone 
A -0.48 -0.3 0.02 -0.24 -0.34 0.24 

39 nerolidol -0.17 0.21 -0.64 0.42 -0.43 0.39 
40 Nimbidiol 0.31 0.26 -0.22 0.6 -0.28 0.42 
41 Nimbolide 0.22 0.2 -0.36 0.32 0.04 0.36 

42 nonanoic 
acid -0.57 -0.21 -1.2 -0.57 -0.67 -0.14 

43 Patchouli 
alcohol -0.12 0.37 -0.88 0.55 -0.32 0.4 

44 
p-
Coumaric 
acid 

-0.56 -0.26 -0.91 -0.12 -0.87 -0.15 

45 Pendulone -0.16 -0.13 0.03 0.21 -0.27 0.31 

46 Protocatech
uic acid -0.88 -0.35 -1.1 -0.58 -1.09 -0.34 

47 Santalol -0.09 -0.04 -0.65 0.23 -0.42 0.39 
48 scopoletin -1 -0.65 -0.95 -0.81 -1.16 -0.24 

49 sibirolide 
A -0.3 -0.12 -1.09 -0.2 -0.28 0.12 

50 sibirolide B -0.42 -0.37 -0.59 0.13 -0.19 0.41 

51 Spathuleno
l -0.42 -0.28 -0.68 0.28 -0.36 0.06 

52 Zingiberen
ol -0.04 0.02 -0.66 0.5 -0.29 0.38 

 

3.3. PHYTOCOMPOUNDS SCREENING USING PYRX SOFTWARE 

Molecular screenings of all the 52 phytocompounds were performed using PyRx software by 

Autodock vina wizard as the engine for docking. During the docking period, the ligands were 

considered to be flexible and the protein was considered to be rigid. The configuration file for 

the grid parameters was generated using Auto Grid engine in Pyrx. The application was also 

used to know/predict the amino acids in the active site of the protein that interact with the 

ligands. The results less than 1.0Å in positional root-mean-square deviation (RMSD) were 

considered ideal and clustered together for finding favorable binding. The highest binding 



energy (most negative) was considered as the ligand with maximum binding affinity. In our 

study, 52 phytocompounds respective to the receptor-ligand interactions; binding affinity 

scores shows negative for all the phytocompounds listed in Table 9 : The top 6 

phytocompounds are listed with binding affinity score here, they are Nimbolide (2ghv -12.6, 

6LU7 -10.1,6LZG -14.1, 6m03-12.3, 6vsb -14), gamma-eudesmol (2ghv -9.4, 6LU7-

6.4,6LZG-9.6,6m03-8.4, 6vsb -9), Beta-eudesmol (2ghv -9.4, 6LU7-6.4, 6LZG -11.2, 6m03-

8.4, 6vsb -9), 10-epi-eudesmol (2ghv -9.4, 6LU7-6.4, 6LZG -11.5, 6m03-8.4, 6vsb -9.3) 

Nimbidiol (2ghv -8,6LU7-6, 6LZG -8.9, 6m03-7.9, 6vsb -9.3-8.2). The other interactions of 

phytoligands are depicted in Table 9.  

 

 
TABLE 9: BINDING AFFINITY SCORES FROM PYRX AUTODOCK VINA  

Sl.n
o Ligand(IUPAC) 2gh

v 
6LU

7 
6LZ

G 
6m0

3 
6vs
b 

1 

Nimbolide(methyl 2-[6-(furan-3-yl)-
7,9,11,15-tetramethyl-12,16-dioxo-3,17-
dioxapentacyclo[9.6.1.02,9.04,8.015,18]octad
eca-7,13-dien-10-yl]acetate) 

-
12.6 

-
10.1 -14.1 -

12.3 -14 

2 
gamma-eudesmol(2-(4a,8-dimethyl-
2,3,4,5,6,7-hexahydro-1H-naphthalen-2-
yl)propan-2-ol) 

-9.4 -6.4 -9.6 -8.4 -9 

3 
Beta-eudesmol(2-(4a-methyl-8-methylidene-
1,2,3,4,5,6,7,8a-octahydronaphthalen-2-
yl)propan-2-ol ) 

-9.4 -6.4 -11.2 -8.4 -9 

4 
10-epi-eudesmol(2-(4a,8-dimethyl-
2,3,4,5,6,8a-hexahydro-1H-naphthalen-2-
yl)propan-2-ol) 

-9.4 -6.4 -11.5 -8.4 -9.3 

5 Nimbidiol(6,7-dihydroxy-1,1,4a-trimethyl-
3,4,10,10a-tetrahydro-2H-phenanthren-9-one) -8 -6 -8.9 -7.9 -8.2 

6 

sibirolide A( (1R,2R,9R,10R,12S)-5,9-
dimethyl-13-methylidene-3-
oxatetracyclo[7.4.0.02,6.010,12]tridec-5-ene-
4,7-dione ) 

-7.9 -5.6 -8.2 -7.2 -7.4 

7 
Berberine(16,17-dimethoxy-5,7-dioxa-13-
azoniapentacyclo[11.8.0.02,10.04,8.015,20]he
nicosa-1(13),2,4(8),9,14,16,18,20-octaene) 

-7.6 -5.9 -7.8 -7.2 -8.2 

8 Glaucic acid(2-(3,8-dimethyl-1,2,3,4,5,6,7,8-
octahydroazulen-5-yl)prop-2-enoic acid) -7.6 -5.6 -8.3 -7.2 -7 

9 sibirolide B((2S,9R,10R,12S)-2-hydroxy-4,9-
dimethyl-13-methylidene-6- -7.6 -5.5 -8.5 -7.9 -7.3 
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oxatetracyclo[7.4.0.03,7.010,12]trideca-3,7-
dien-5-one ) 

10 

Furanocembranoid 3((4S,5E,7S,10R,11S)-
7,11-dimethyl-4-propan-2-yl-14-
oxabicyclo[11.2.1]hexadeca-1(15),5,13(16)-
triene-7,10,11-trio) 

-7.4 -5.5 -7.6 -7.2 -7.9 

11 Cadinol(1,6-dimethyl-4-propan-2-yl-
3,4,4a,7,8,8a-hexahydro-2H-naphthalen-1-ol) -7.3 -5 -7.1 -6.3 -6.9 

12 Cubenol(4,7-dimethyl-1-propan-2-yl-
2,3,4,5,6,8a-hexahydro-1H-naphthalen-4a-ol) -7.3 -4.9 -7.3 -6.1 -7.1 

13 
Millettilone A(2-(7-hydroxy-4-methoxy-3,4-
dihydro-2H-chromen-3-yl)-5-
methoxycyclohexa-2,5-diene-1,4-dione) 

-7.2 -5.4 -8.3 -7.3 -8 

14 formononetin(7-hydroxy-3-(4-
methoxyphenyl)chromen-4-one ) -7.2 -5.7 -8 -7.3 -7.5 

15 
Glaucyl alcohol(2-(3,8-dimethyl-
1,2,3,4,5,6,7,8-octahydroazulen-5-yl)prop-2-
en-1-ol) 

-7.2 -5.5 -7.6 -6.4 -6.6 

16 
Dihydroechioidinin(5-hydroxy-2-(2-
hydroxyphenyl)-7-methoxy-2,3-
dihydrochromen-4-one ) 

-7.2 -5.8 -8.4 -7.4 -7.8 

17 
3R-Claussequinone(2-(7-hydroxy-3,4-
dihydro-2H-chromen-3-yl)-5-
methoxycyclohexa-2,5-diene-1,4-dione) 

-7.1 -6 -8.2 -7 -8.2 

18 Guaiol(2-(3,8-dimethyl-1,2,3,4,5,6,7,8-
octahydroazulen-5-yl)propan-2-ol ) -7.1 -5.3 -7.5 -6.7 -6.7 

19 Ficusin(furo[3,2-g]chromen-7-one) -7.1 -5.2 -6.9 -6.3 -7.2 

20 

Ethyl iso-allocholate(ethyl 4-(3,7,12-
trihydroxy-10,13-dimethyl-
2,3,4,5,6,7,8,9,11,12,14,15,16,17-
tetradecahydro-1H-cyclopenta[a]phenanthren-
17-yl)pentanoate) 

-7 -6 -8.3 -7.5 -8.3 

21 
Spathulenol(1,1,7-trimethyl-4-methylidene-
1a,2,3,4a,5,6,7a,7b-
octahydrocyclopropa[h]azulen-7-ol ) 

-6.9 -4.9 -7.5 -6.3 -7.1 

22 
cis-Sesquisabinene hydrate(2-methyl-5-(6-
methylhept-5-en-2-yl)bicyclo[3.1.0]hexan-2-
ol ) 

-6.8 -4.4 -6.6 -5.8 -6 

23 
Pendulone(5-(7-hydroxy-3,4-dihydro-2H-
chromen-3-yl)-2,3-dimethoxycyclohexa-2,5-
diene-1,4-dione) 

-6.8 -5.9 -8.2 -7 -7.5 

24 Isopsoralen(furo[2,3-h]chromen-2-one) -6.7 -5.4 -7.2 -6.1 -7.1 

25 (-)-simulanol(4-[(2R,3S)-3-(hydroxymethyl)-
5-[(E)-3-hydroxyprop-1-enyl]-7-methoxy-2,3- -6.7 -5.2 -7.7 -6.8 -7.2 
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dihydro-1-benzofuran-2-yl]-2,6-
dimethoxyphenol) 

26 
inusoniolide(4-[(3aS,6S,8aS)-6-methyl-2-oxo-
3,3a,4,5,6,8a-hexahydrocyclohepta[b]furan-7-
yl]-2-methylbutanal) 

-6.7 -5.5 -7.1 -6.3 -7.2 

27 
Globulol(1,1,4,7-tetramethyl-
2,3,4a,5,6,7,7a,7b-octahydro-1aH-
cyclopropa[e]azulen-4-ol) 

-6.5 -5.2 -7.8 -6.9 -6.7 

28 Zingiberenol( 1-methyl-4-(6-methylhept-5-en-
2-yl)cyclohex-2-en-1-ol) -6.5 -4.5 -6.5 -6.4 -5.9 

29 nerolidol(3,7,11-trimethyldodeca-1,6,10-trien-
3-ol) -6.5 -4.9 -7.3 -5.2 -5.8 

30 (E,E)-farnesol (3,7,11-trimethyldodeca-
2,6,10-trien-1-ol ) -6.4 -4.8 -7.9 -5.9 -6 

31 Cedr-8-en-13-ol((2,6,8-trimethyl-6-
tricyclo[5.3.1.01,5]undec-8-enyl)methanol ) -6.4 -5.2 -7.1 -6.2 -6.8 

32 Patchouli alcohol(2,2,6,8-
tetramethyltricyclo[5.3.1.03,8]undecan-3-ol) -6.4 -5.1 -7.7 -6.5 -7 

33 
Santalol(2-methyl-5-(2-methyl-3-
methylidene-2-bicyclo[2.2.1]heptanyl)pent-2-
en-1-ol ) 

-6.4 -4.9 -6.8 -5.9 -6.3 

34 2,4-ditert-butylphenol (2,4-ditert-
butylphenol ) -6.4 -4.9 -7.1 -6 -6.3 

35 Butylated hydroxytoluene(2,6-ditert-butyl-4-
methylpheno) -6.3 -4.7 -6.4 -6 -6.7 

36 caffeic acid ethyl ester(ethyl 3-(3,4-
dihydroxyphenyl)prop-2-enoate ) -6.3 -5 -6.7 -6 -6.3 

37 7-hydroxy-2,5-dimethyl 4H-1-Benzopyran-4-
one (7-hydroxy-2,5-dimethylchromen-4-one) -6.2 -4.9 -7.4 -6.2 -6.8 

38 Cedr-8-en-15-ol(2,6,6-trimethyl-8-
tricyclo[5.3.1.01,5]undec-8-enyl)methanol) -6.2 -5.3 -7.1 -6.5 -7 

39 

Benzenepropanoic acid, 3,5-bis(1,1-
dimethylethyl)-4-hydroxy-, methyl 
ester(methyl 3-(3,5-ditert-butyl-4-
hydroxyphenyl)propanoate ) 

-6.1 -5.5 -6.9 -6 -6.6 

40 scopoletin(7-hydroxy-6-methoxychromen-2-
one) -6 -5.2 -6.6 -6.1 -6.5 

41 1-hexyl-2-nitrocyclohexane(1-hexyl-2-
nitrocyclohexane) -6 -4.6 -6.2 -5.4 -5.6 

42 2,4-Quinolinediol(4-hydroxy-1H-quinolin-2-
one) -5.8 -5 -6.9 -5.8 -6.2 

43 Caffeic acid( 3-(3,4-dihydroxyphenyl)prop-2-
enoic acid ) -5.7 -5.4 -6.9 -5.8 -6.3 
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44 p-Coumaric acid(3-(4-hydroxyphenyl)prop-2-
enoic acid ) -5.7 -5.1 -6.8 -5.7 -5.9 

45 gallic acid( 3,4,5-trihydroxybenzoic acid ) -5.7 -5.1 -6.4 -5.5 -6.3 

46 
exo-2-Hydroxycineole acetate((1,3,3-
trimethyl-2-oxabicyclo[2.2.2]octan-6-yl) 
acetate) 

-5.6 -5.6 -6.1 -5.7 -6.2 

47 Protocatechuic acid(3,4-dihydroxybenzoic 
acid ) -5.4 -4.8 -6.3 -5.3 -6.2 

48 Acetic acid, dec-2-yl ester(decan-2-yl acetate ) -5.3 -3.6 -4.7 -4.7 -4.9 

49 Methyl 2,4,6-trihydroxybenzoate ( methyl 
2,4,6-trihydroxybenzoate) -5.3 -4.5 -6.2 -5.4 -6.3 

50 nonanoic acid(nonanoic acid) -5.3 -4.1 -6 -4.5 -4.6 
51 decanoic acid(decanoic acid ) -5.1 -4.5 -5.1 -4.6 -5.1 

52 2-Pinen-4-ol(4,6,6-
trimethylbicyclo[3.1.1]hept-3-en-2-o) -5.1 -4.4 -6.1 -5.5 -5.7 

 

4. DISCUSSION: 

The emergence of Novel Coronavirus (SARS CoV2) had caused an unprecedented level of 

global public health emergency with 40,890,712 Confirmed cases and 1,126,351 Confirmed 

deaths across 235 Countries, areas, or territories as reported by World Health Organization 

(WHO 2020) (information updated till 22nd October 2020).  Therefore, there is an urgent need 

for the discovery of a potential treatment to control the COVID-19 pandemic. There are no 

randomized clinical trials (RCT) that have found an effective drug against COVID-19. 

However, some preliminary trials using the non-specific SARS-CoV2 drug approach have 

shown good outcomes such as the use of repurposed corticosteroid drugs (Sanders JM 2020) 

(Dyall 2014) and convalescent plasma therapy (Sanders JM 2020). Therefore, no clinically 

available antiviral drugs have been developed for SARS-CoV-2. Traditional Indian medicinal 

systems offer a strong base for the utilization of many plants in terms of safety and effective 

leads for different disease management and treatment strategies  (Nyika 2007); (Zasławski 

2005); (Emanuel 2004). Many plant-derived substances previously studied would possibly 

serve as potential antiviral agents for the treat severe acute respiratory syndrome (SARS). 

Hence, molecular docking is the fastest way to explore the mechanism of action of potential 

ethnomedicinal against protein targets associated with SARS-CoV-2.  

4.1. RECEPTOR SELECTION AND ACTIVE SITE PREDICTION: 



SARS-CoV-2 has four main structural proteins including spike (S) glycoprotein, small 

envelope (E) glycoprotein, membrane (M) glycoprotein, and nucleocapsid (N) protein, and 

several accessory proteins (Jiang Shibo 2020).  The viral entry into the host cells occurs through 

the interaction of the SARS-CoV-2 S protein with the angiotensin-converting enzyme 2 

(ACE2) receptor (Astuti Indwiani 2020). Because of this, bioinformatics analysis of the 

proteins encoded by the novel coronavirus genes was systematically retrieved from the Protein 

data bank.  In this present study, Spike glycoprotein with single receptor-binding domain [PDB 

ID:6VSB], SARS protein receptor-binding with angiotensin-converting enzyme 2 (ACE2) 

receptor complex with spike receptor-binding domain [PDB ID:6LZG], SARS spike protein 

receptor-binding domain [PDB ID:2GHV], two forms of  main protease one in the apo form 

[PDB ID: 6M03]  and another one  complex with an inhibitor N3 [PDB ID: 6LU7] were 

investigated for high throughput virtual ligand screening. 

 

 

4.2. PROSPECTION OF PHARMACOKINETICS AND BIOACTIVITY POTENTIAL 

OF PHYTOLIGANDS: 

4.2.1. MOLECULAR STRUCTURE RETRIEVAL OF PHYTOLIGANDS BASED ON 

PYTHON WEB SCRAPING APPROACH 

Furthermore, to search for potential coronavirus therapeutic drugs a total of 1378 

phytochemical metabolites of 58 ethnomedicinal plants were screened. The structures of these 

1378 chemical compounds were retrieved from PubChem and ChemSpider online servers 

based on the python web scrapping technique. Python web scrapping is an alternative method 

of machine learning approaches have recently (re)emerged, some of which may be considered 

instances of domain-specific AI which have been successfully employed for robust drug 

discovery and design (Yang 2019).Many individual chemicals have a specific page on the 

PubChem database that will give information about the use, manufacture, and properties of that 

chemical. The properties that are displayed off to the side include the relevant chemical 

identifiers along with alternate names and reaction information.  Accordingly, the Canonical 

Smiles were scraped for 698 out of 1378 phytochemical compounds using automated python 



scripts designed to web scrape from the PubChem database using the PUG Rest Application 

Programming Interface (API) and ChEMBL API.  

4.2.3. DRUG-LIKELINESS AND ADMET PROPERTIES 

Thus retrieved 1378 phytochemical compounds were validated for its drug-likeliness and 

ADMET properties.  The drug-like property of the designed compounds was carried out, based 

on Lipinski’s rule of five by using the ADMETlab web server for drug-likeness analysis. All 

the designed compounds showed zero violations. As per  Lipinski's Rule of Five, an orally 

active drug has not more than one violation, it should have not more than 5 hydrogen bond 

donors (nitrogen or oxygen atoms with one or more hydrogen atoms), not more than 10 

hydrogen bond acceptors (nitrogen or oxygen atoms), a molecular weight under 500 g/mol., 

and a partition coefficient log P less than 5 and Not more than 15 rotatable bonds were 

considered, the number of hydrogen bond donors (HBD's) ≤ 5 and number of hydrogen bond 

acceptors (HBAs) ≤ 10.6 (Sumathy 2016) (Ursu 2011). According to the results, the 

phytochemical ligand exhibiting Molecular weight (152.237 to 466.53 Daltons), log P values 

of the compounds are ranges from 0.502 to 4.398 and topological polar surface area ranges 

from 20.23 to 97.99 angstrom were narrow down.  Among the screened phytochemicals 52 

compounds are within the limit of the Lipinski rules are used for further process.  A higher log 

P value indicates lower hydrophilicity and, thus, poor absorption and permeation. A value 

indicates solubility; the lesser the value, the higher the solubility which would enhance the 

absorption. A lower molecular weight would again enhance the absorption rate and thus most 

of the drugs are tried to be kept at the lowest possible molecular weight (Menting 2014) TPSA 

or Topological Polar Surface Area indicates the surface belonging to polar atoms in the 

compound. An increased TPSA is associated with diminished membrane permeability and 

compounds with higher TPSA were better substrates for p-glycoprotein (responsible for drug 

efflux from a cell). Thus, comparing the compounds, lower TPSA was favorable for the drug-

like property. It was also predicted that a molecule with better CNS penetration should have a 

lower TPSA value (Yang 2019). ADMET properties of a compound deal with its absorption, 

distribution, metabolism, excretion, and toxicity through the human body. Toxicity is an 

important factor that often overshadows the ADME behavior. Failure of drugs at the clinical 

trial stage due to adverse effects generated because of their toxicity proves expensive and 

detrimental in the drug development process (Menting 2014). ADMET, which constitutes the 

pharmacokinetic profile of a drug molecule, is very essential in evaluating its 



pharmacodynamic activities (Nisha 2016). A high-quality drug candidate should not only have 

sufficient efficacy against the therapeutic target but also show appropriate ADMET properties 

at a therapeutic dose which was proved in these findings. 

4.2.4. PHARMACOKINETICS AND BIOACTIVITY PREDICTION OF 

PHYTOLIGANDS 

In silico study, especially pharmacokinetics and bioavailability prediction were performed by 

using the SwissADME online tool to know the lead phytochemical compound for the drug 

candidate for the prevention of pain and inflammation (Puja Tripathi 2019).  In the present 

investigation, drug likeliness property of five compounds against GPCR ligand, ion channel 

modulator, a kinase inhibitor, nuclear receptor ligand, protease inhibitor, and enzyme inhibitory 

activity was studied. It showed that the G-Protein Coupled Receptor activity ranges from -1.11 

to -0.344; Kinase inhibitor activity ranges from - 84 to 0.05; Protease inhibitor activity ranges 

from -1.25 to -0.23, and the enzyme inhibitors activity are from -0.37 to 0.82 for the designed 

compounds was obtained.  The bioactivity score based on the Molinspiration study for all the 

52 compounds were between 0.00 and -0.50. Nearly 98% of the molecules were presumed to 

have bioactivity scores between -0.50 to 0.00 are expected to be moderately active, 2% of 

compounds exhibit good bioactive potential. 

To find out the possible biological activity of selected bioactive constituents was obtained by 

using the PASS online server. The set of pharmacological effects, mechanisms of action, and 

specific toxicities, that might be exhibited by a particular compound in its interaction with 

biological entities, and which is predicted by PASS score (Liao 2013) (Paramashivam SK 

2015). The Pa and Pi values vary from 0 to 1, and Pa >Pi since these probabilities are calculated 

independently. Pa and Pi can be considered to be measures of the compound under study 

belonging to the classes of active and inactive compounds, respectively. Around 410 

compounds pass drug likeliness and then screened for ADMET analysis whereas the binding 

behaviors were further elucidated for 198 compounds for pharmacokinetic potential (pk CSM 

score). In the present study, the PASS prediction results denoted that the highest Pa value than 

Pi value occurred for all the 52 compounds thus showed that all these compounds exhibited 

antiviral potential. 

4.2.5. MOLECULAR DOCKING AND VISUALIZATION 



The molecular interaction of the screened phytoligands with antiviral pharmacokinetic 

potential leading to the surface interaction with the selected protein receptors of SARS-CoV-2 

was subjected to PyRx virtual screening software. The results revealed that the maximum of 

the screened phytoligands exhibited strong affinities towards all the target proteins [viz., PDB 

ID: 6M03, 6LU7, 6VSB, 6LZG, and 2GHV]. The results of less than 1.0Å in positional root-

mean-square deviation (RMSD) were considered ideal and clustered together for finding 

favorable binding.  Binding energy is the primary parameter that is generated as a result of 

molecular docking. It gives us the idea of the strength and affinity of the interaction between 

the ligand and the receptor. The greater the binding energy is, the weaker the interaction is and 

vice versa. Thus, during any docking study, it is intended to look for the ligand which displays 

the least binding energy, thus the best affinity among the test molecules. The highest binding 

energy (most negative) was considered as the ligand with a maximum binding affinity (Kumar 

et al., 2020). In our study, 52 phytocompounds respective to the receptor-ligand interactions; 

binding affinity scores show negative for all the phytocompounds. The top 6 phytocompounds 

are listed with binding affinity score here, they are Nimbolide (2ghv -12.6, 6LU7 -10.1,6LZG 

-14.1, 6m03-12.3, 6vsb -14), gamma-eudesmol (2ghv -9.4, 6LU7-6.4,6LZG-9.6,6m03-8.4, 

6vsb -9), Beta-eudesmol (2ghv -9.4, 6LU7-6.4, 6LZG -11.2, 6m03-8.4, 6vsb -9), 10-epi-

eudesmol (2ghv -9.4, 6LU7-6.4, 6LZG -11.5, 6m03-8.4, 6vsb -9.3) Nimbidiol (2ghv -8,6LU7-

6, 6LZG -8.9, 6m03-7.9, 6vsb -9.3-8.2). Thus the molecular docking studies indicate thus the 

established antiviral phytochemicals could also be used for the treatment of COVID-19, if 

found producing desirable inhibitory effect against SARS-CoV-2 viral receptors after under 

venting in vivo/ in vitro studies like biochemical activity assay or cell-based assays.  

5. CONCLUSION 

Thus, the present investigation reveals the potential of antiviral phytochemical ligands binds to 

the possible targets against the selected SARS-CoV-2 receptors were predicted.  Furthermore, 

these selected phytochemical ligands could serve as an efficacious antiviral agent against multi 

viral targets will provide a new lead of antiviral compounds and targets that could be 

experimentally confirmed for further in vitro and in vivo studies of SARS-CoV-2.  
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