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Summary:

Neuro developmental disorders are group of childhood onset disorders. The most severe
NDD affects the multiple domains of cognitive development are intellectual disability(ID),
pervasive disorders of social communication like (Autism Spectrum Disorder (ASD)), motor
functioning and cognition(epilepsy encephalopathies) and behavioural regulations (Attention
Deficit Hyperactive Disorder, ADHD). Under this category some of them are single gene
disorders. ASD and ADHD are common and they result in major functional impairment
related to high co-morbidity rates. Identification of the disorder-gene association is mainly
used to understand the pathogenies and therapeutic targets discovery. Relationship between
the disease/disorder and gene can be determined by analysing the genomic sequences. One of
the challenges in predicting the complex human disease status is using genomic data. The
curse of dimensionality results in unsatisfied performance of many algorithms. Recent
advancements in machine learning is the deep learning which can be used to extract
meaningful features from high-dimensional and complex datasets through stacked and
hierarchical learning process. Deep Learning algorithms shows promising predictive
potential by applying learning strategies based on pattern classification of the input gene
sequence to the type of possible disorders(Mohammed et. al., 2019). In this paper we propose
methodologies to formulate the Neuro Developmental Disorder dataset which comprises of
the fasta sequence corresponding to ADHD, ASD, Duchne Muscular Disorder(DMD) and
Cerebral Palsy(CP) using webscrapping approach and natural language processing. The
formulated dataset is validated by splitting the gene id from the sequence using natural
language processing technique and matching with the dataset provided by NCBI related to
developmental brain disorder https://www.dbdb.urmc.rochester.edu and dbGAP for ADHD

through web scrapping technique. The dataset is fed as input to the convolution neural

network to classify the gene sequence based on the class label which corresponds to



ADHD,ASD, DMD and CP. The proposed CNN provides an accuracy of 95%. This was
followed by the statistical approach to find the correlation between the genes which plays a
vital role in diagnosing the disorder and which has least correlation in the diagnosis and
which type of gene overlap between the disorders. To perform this process we used the
bioinformatics tools like metascape for enrichment gene analysis, Malacards for correlation
analysis and VLAD: Gene List Analysis and Visualization. Further the predicted genes which
play a less significant role in the identification of the disorders were identified and the results
are compared with the literature review to justify the resultant output. This research work has
clearly revealed considerable overlap of genes involved in more than one NDD. The
proposed outcome is validated with the WES approach which clearly demonstrated in a
recent study based in consanguineous families with NDDs, in which 14 new candidate genes
not previously associated with NDD disorders were identified (GRM7, STXIA, CCAR2,
EEFID, GALNT2, SLC44A41, LRRIQ3, AMZ2, CLMN, SEC23IP, INIP, NARG2, FAM234B,
and TRAPI) all in patients who were homozygous for truncating mutations in each of the
genes and with SFARI Gene bioinformatics tool. The phylogenetic tree generated for the
formulated dataset to identify the similar and dissimilar gene sequences. The polygenetic tree
plotted between the gene sequence clearly depicts that Each major clusters has sub-clusters.
DMD disease sequences are clustered in the first and third major clusters. They are, NM
001365584.1 Homo sapiens neuroligin 4 Y-linked (NLGN4Y) transcript variant 6 mRNA
DMD and NR 028319.1 Homo sapiens neuroligin 4 Y-linked (NLGN4Y) transcript variant 4
non-coding RNA DMD , NM 001365591.1 Homo sapiens neuroligin 4 Y-linked (NLGN4Y)
transcript variant 10 mRNA DMD and NM 001365586.1 Homo sapiens neuroligin 4 Y-
linked (NLGN4Y) transcript variant 7 mRNA DMD , NM 001282145.2 Homo sapiens
neuroligin 4 X-linked (NLGN4X) transcript variant 3 mRNA DMD and NM 181332.3 Homo
sapiens neuroligin 4 X-linked (NLGN4X) transcript variant 2 mRNA DMD were closely
related. CP and DMD disease sequence comes under the second and third major clusters
respectively. The CNN algorithm was implemented for classification of the gene sequence
resulted in an accuracy of 95% with Area under ROC curve=0.90. The Statistical
Interpretation between the gene sequence with negative correlation was analysed and
validated using gene analytics tool and metascape.org. Genes with negative correlation
related to Vocalization behaviour GO:0071625 are CNTNAP2,NLGN3,NLGN4X,NLGN4Y,
Regulation of membrane potential G0:0042391 are
DMD,HTR3A MEF2C,NLGN3,NLGN4X, Negative regulation of cell motility GO:2000146



are DAGI,KANKI1,MEF2C,SPOCK3 and Cellular response to transforming growth factor
beta stimulus GO:0071560 are DUSP15,LTBP4,MEF2C.

Github Repository of the Project: angayarkannipitchumani/DeepLearning-for-NDD-

Classification

Objectives:

Design and optimize the pathway for diagnosis, therapeutic intervention, and prognosis by
using large multidimensional biological datasets that capture individual variability in genes,
function and environment to identify neuro developmental disorders.

e Duchenne muscular dystrophy
e Cerebral palsy
e Autism
e ADHD
Scope:

To identify and predict the genomic variations among children in the following neuro
developmental disorders using deep learning model

1 Duchenne muscular dystrophy

[ Cerebral palsy

[ Autism

7 ADHD
the effective development of deep learning model helps to the early detection of embryonic

neurodevelopmental disorders (ENDs) based on its prognostic values could render quality
diagnosis and health management.

Methodology:
I. Formation of Dataset

The dataset with the gene sequence is formulated using the web scrapping approach through
python pipeline library called entrez. Entrez is an online search tool by NCBI It is a
Molecular biology databases with an integrated global query supporting Boolean operators
and field search. It returns results from all the databases with information like the number of
hits from each databases, records with links to the originating database, etc. Biopython
provides an Entrez specific module, Bio.Entrez to access Entrez database. The Bio.Enterz
library is used to retrieve the fasta sequence from NCBI based on the keyword search related
to the four different neuro developmental disorders in human which is indicated in Figure 1.
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Figure 1: Enterz bio python Library to access the gene sequence from NCBI

The derived sequences are stored in a csv file using pandas library with Sequence Number,
Sequence and Sequence Description which is represented in Figure 2.

II Dataset Validation

The collected dataset is validated by retrieving the gene details from the description field of
the Genbank nucleotide sequence data files using Natural Language Processing technique.
Tokenization is essentially splitting a phrase, sentence, paragraph, or an entire text document
into smaller units, such as individual words or terms. Each of these smaller units are called
tokens. The tokens could be words, numbers or punctuation marks. We use this concept to
split the description words into tokens and collect only the gene details from the description.

NG_051280.1 Homo sapiens CNES enhancer downstream of SHOX

(CNES) on chromosome X Y

Tokenization

NG _051280.1/ Homo sapiens /CNES5 /enhancer/ downstream/ of
/SHOX/ (CNES) /on/ chromosome/ X /Y

Identify Parts of Speech for
Individual Words

NG 051280.1/ Homo sapiens/ CNES5 /  enhancer/  downstream/ of
/ SHOX/ (CNES5)/ on/ chromosome/ X/ Y/

Apply templates/regularexpressions to find
relevant patterns

[class=induction-of-expression, by= NG _051280.1, of= CNES]

Figure 3: NLP technique implemented to identify the Gene from the description



The resultant gene retrieved from the sequence is cross verified by copying and pasting the
gene to https://www.ncbi.nlm.nih.gov/gene/?term=NLGN4Y or by using the following query

a new dataset with Gene ID and other relevant information was created

e Autism

e https://ghr.nlm.nih.gov/search?query=autism&tab=gene

e ADHD

e https://ghr.nlm.nih.gov/search?query=adhd&tab=gene

e Duchenne muscular dystrophy

e https://ghr.nlm.nih.gov/search?query=duchenne+muscular+dystrophy&tab=gene&ro
ws=10

e cerebral palsy

e https://ghr.nlm.nih.gov/search?query=cerebral+palsy&tab=gene

The retrived gene id is validated with the dataset formulated with tax_id, Org name,
GenelD, CurrentID, Status, Symbol, Aliases, description, other designations,
map_location, chromosome, genomic_nucleotide accession.version,
start_position_on_the genomic accession, end position _on_the genomic accession, orientation,
exon_count , OMIM and Class
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Figure 4: GenelD and other parameters collected from NIH

Gene Sequence Classification using Deep learning model:

Accurate gene prediction in metagenomics fragments is a computationally challenging task
due to the short-read length, incomplete, and fragmented nature of the data. Most gene-
prediction programs are based on extracting a large number of features and then applying



statistical approaches or supervised classification approaches to predict genes(Al-Ajlan, A.,
El Allali, A., 2019). We use deep learning techniques to automatically extract significant
features from raw data, such as image intensities or DNA sequences. In this research work we
had implemented the convolutional neural network (CNN) to the classification problem of
DNA sequences based on the four types of neuro developmental disorders. The training of
CNNs with distributed representations of four nucleotides has successfully derived position
weight matrices on the learned kernels . The proposed architecture is shown in figure 5. The
sequence coloumn alone is read from the csv file and given as input to CNN by performing
one-hot encoding technique in which the gene sequences are encoded as a binary value using
One-hot encoding technique.

We have implemented One-hot encoding to represent the DNA sequence using binary values.
This is widely used in dep learning methods and lends itself well to algorithms like
convolutional neural networks. In this example, “ATGC” would become [0,0,0,1], [0,0,1,0],
[0,1,0,0], [1,0,0,0]. And these one-hot encoded vectors can either be concatenated or turned
into 2 dimensional arrays .

Sequence letter | Binary value
A 0001
G 0100
T 0010
C 1000

The proposed model includes four steps in total regarding to different layer embedded. The
model contains one embedding layer which will encoded the sequences and one
convolutional layer followed by a max-pooling layer which extracts features from
representation matrixes of sequences. Then, all the extracted features is merged into one big
feature vector using fully connected layer. Finally, the accuracy of the tested model is
calculate and will be analysed as a performance result.

Model: "sequential_ 4"

Layer (type) Output Shape Param #
embedding_4 (Embedding) (None, 256, 8) 40
convld_8 (ConvlD) (None, 256, 64) 3136
max_poolingld_8 (MaxPoolingl (None, 128, 64) 2]
convld_9 (ConvlD) (None, 128, 32) 6176
max_poolingld_9 (MaxPoolingl (None, 64, 32) 2]
flatten_4 (Flatten) (None, 2043) 2]
dense_7 (Dense) (None, 128) 262272
dense_8 (Dense) (None, 4) 516

Total params: 272,140
Trainable params: 272,140
Non-trainable params: @

None

Figure 5: Proposed CNN for classification of NDD gene sequence



| Hyperparameter H Range

|
|Kernel size for convolution H3 ‘
|Number of kernels (in two convolution layers) H25 6X64 and 128X32 ‘
|Pooling method HMax pooling ‘
|
|
|

|Pooling in second layer HMax Pooling

|Number of units in hidden layer (ratio to input layer) H1/3, 1/2,2/3,3/4, 1
|Learning algorithm HAdam

Table 1: Hyperparameters used for CNN
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Figure 7: Number of Iterations in CNN is 25
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train-acc = 1.0
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Figure 8: Confusion Matrix of CNN Classification technique
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Figure 9: Error rate for CNN model
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Figure 10: ROC Curve for the proposed CNN model

Confusion matrix is a technique to determine the performance of the classification algorithm.
The confusion matrix clearly indicates that the classification of the class labels is very
accurate with an overall accuracy of 95%.

Sequence Similarity analysis using Phylogenetic tree:

The evolutionary history was inferred using the UPGMA method. The optimal tree with the
sum of branch length = 11.88472227 is shown. The tree is drawn to scale, with branch
lengths in the same units as those of the evolutionary distances used to infer the phylogenetic
tree. The evolutionary distances were computed using the p-distance method and are in the
units of the number of base differences per site. This analysis involved 95 nucleotide
sequences. Codon positions included were 1st+2nd+3rd+Noncoding. All ambiguous
positions were removed for each sequence pair (pairwise deletion option). There were a total
of 39745 positions in the final dataset. Evolutionary analyses were conducted in MEGA X.

In the phylogenetic tree four major clusters were found. Each major clusters has sub-clusters.
DMD disease sequences are clustered in the first and third major clusters. They are, NM
001365584.1 Homo sapiens neuroligin 4 Y-linked (NLGN4Y) transcript variant 6 mRNA
DMD and NR 028319.1 Homo sapiens neuroligin 4 Y-linked (NLGN4Y) transcript variant 4
non-coding RNA DMD , NM 001365591.1 Homo sapiens neuroligin 4 Y-linked (NLGN4Y)
transcript variant 10 mRNA DMD and NM 001365586.1 Homo sapiens neuroligin 4 Y-



linked (NLGN4Y) transcript variant 7 mRNA DMD , NM 001282145.2 Homo sapiens
neuroligin 4 X-linked (NLGN4X) transcript variant 3 mRNA DMD and NM 181332.3 Homo
sapiens neuroligin 4 X-linked (NLGN4X) transcript variant 2 mRNA DMD were closely
related. CP and DMD disease sequence comes under the second and third major clusters

respectively .
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Figure 11: Phylogenetic tree between ADHD Autism DMD and CP



Gene List Analysis and Visualization has been done using the following tools to find the
similarity between the sequences

Bioinformatics Tools used for Gene correlation study:

» http://metascape.org for enrich

* VLAD: Gene List Analysis and Visualization
« MALACARD: Human Disease Database

Gene Correlation Analysis using Statistical Approach:
Vocalization Behaviour:

* -0.33386 : Negative Correlation. The relationship between vocalization behaviour and
gene is very week. This gene is related to CNTNAP2,NLGN3,NLGN4X,NLGN4Y -
Autism

Regulation of Membrane Potential:

* -0.25214: Negative Correlation. The relationship between regulation of membrane
potential and gene is very week. The genes which has negative correlation are
CD99L2(AUTISM),DAG1(DMD),KANK1(CP),MEF2C(AUTISM),PAX6(AUTISM
),SPARC(DMD)

GO:0042391 & GO:0071625 :

* 0.5271801636: Positive Correlation with vocalization behaviour. The relationship
between vocalization behaviour and regulation of membrane potential is moderate.
This shows perfect positive correlation with regulation of membrane potential

Negative regulation of cell mobility:

* -0.2014: Negative correlation with gene. The relationship between cell mo and gene
are very weak. DAGI1(Muscular Dystrophy-
),KANK 1(CP),MEF2C(AUTISM,DMD,ADHD),SPOCK3(ADHD).

Cellular response to transform:

* -0.10325: Negative correlation with gene. The relationship between cell mo and gene
are very weak. DUSP15(Autism),LTBP4(DMD),MEF2C(AUTISM,DMD,ADHD)

Total number of genes taken for study is 99 and out of 99 , 15 genes shows negative
correlation. The above statistical interpretation was validated using enrichment analysis
through metascape.org.
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The greater the number of purple links and the longer the dark
orange arcs implies greater overlap among the input gene lists,

Blue links indicate the amount of finctional overlap among the
input gene lists.

It is common in meta-analysis that we observe little directly
overlap among studies, due to the variations in the biological assays
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captured different parts of the same biological processes.

Figure 12(b) Gene Cluster analysis

The Heatmap obtained coincides with the statistical interpretation results. The heatmap
cells are colored by their log p-values, white cells indicate the lack of enrichment for that
term in the corresponding gene list.
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Figure 12(b): Enrichment Analysis output from metascape.org

Clustering of the genes is indicated in the figure below
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Figure 13: Clustering of the genes sequences under ADHD,DMD,Autism and CP
through metascape.org
This was followed by the statistical approach to find the correlation between the genes which
plays a vital role in diagnosing the disorder and which has least correlation in the diagnosis
and which type of gene overlap between the disorders. To perform this process we used the
bioinformatics tools like metascape for enrichment gene analysis, Malacards for correlation
analysis and VLAD: Gene List Analysis and Visualization. Further the predicted genes which
play a less significant role in the identification of the disorders were identified and the results

are compared with the literature review to justify the resultant output. This research work has



clearly revealed considerable overlap of genes involved in more than one NDD. The
proposed outcome is validated with the WES approach which clearly demonstrated in a
recent study based in consanguineous families with NDDs, in which 14 new candidate genes
not previously associated with NDD disorders were identified (GRM7, STXIA, CCAR2,
EEFID, GALNT2, SLC44A41, LRRIQ3, AMZ2, CLMN, SEC23IP, INIP, NARG2, FAM234B,
and TRAPI) all in patients who were homozygous for truncating mutations in each of the
genes and with SFARI Gene bioinformatics tool. The phylogenetic tree generated for the
formulated dataset to identify the similar and dissimilar gene sequences. The phylogenetic
tree plotted between the gene sequences clearly depicts that Each major clusters has sub-
clusters. DMD disease sequences are clustered in the first and third major clusters. They are,
NM 001365584.1 Homo sapiens neuroligin 4 Y-linked (NLGN4Y) transcript variant 6
mRNA DMD and NR 028319.1 Homo sapiens neuroligin 4 Y-linked (NLGN4Y) transcript
variant 4 non-coding RNA DMD , NM 001365591.1 Homo sapiens neuroligin 4 Y-linked
(NLGN4Y) transcript variant 10 mRNA DMD and NM 001365586.1 Homo sapiens
neuroligin 4 Y-linked (NLGN4Y) transcript variant 7 mRNA DMD , NM 001282145.2
Homo sapiens neuroligin 4 X-linked (NLGN4X) transcript variant 3 mRNA DMD and NM
181332.3 Homo sapiens neuroligin 4 X-linked (NLGN4X) transcript variant 2 mRNA DMD
were closely related. CP and DMD disease sequence comes under the second and third major
clusters respectively. The Statistical Interpretation between the gene sequences using
metascape.org enrichment analysis was done. The genes with negative correlation was

analysed and validated using gene analytics tool.

GO:0042391 GO:0071560
GO:0071625 regulation of cellular
vocalization membrane GO:2000146 negative response to
Gene behavior potential regulation of cell mo  transform

Gene 1

GO:0071625 vocalization

behavior -0.33386 1

GO:0042391  regulation of

membrane potential -0.25214 0.527101636 1

GO:2000146 negative

regulation of cell mo -0.2014 0.527101636 0.206349206 1

GO:0071560 cellular response

to transform -0.10325 0.168408267 0.213844343 -0.02916 1

Table 1: Negative Gene Correlation



Genes with negative correlation related to Vocalization behaviour GO:0071625 are
CNTNAP2,NLGN3,NLGN4X ,NLGN4Y, Regulation of membrane potential GO:0042391
are DMD,HTR3A,MEF2C,NLGN3,NLGN4X, Negative regulation of cell motility
G0:2000146 are DAG1,KANKI1,MEF2C,SPOCK3 and Cellular response to transforming
growth factor beta stimulus GO:0071560 are DUSP15,LTBP4,MEF2C.

Justification for the statistical interpretation:

Positive correlation of the finding with review of literature & Gene ontology study
Pathogenic mutations in the X-linked Neuroligin 4 gene (NLGN4X) in autism spectrum
disorders (ASDs) and/or mental retardation (MR) are rare (Daoud , 2009).

According to gene antology annotation DMD and NLGN4X has not been associated with
Regulation of membrane potential while MEF2C the gene associated with AUTISM, DMD,
ADHD and NLGN3,NLGN4X which is associated with autism is based on positive
regulation of excitatory postsynaptic potential and it is unclear according to the literature of
how mutations in NLGN4X result in neurodevelopmental defects is associated with autism
(Lingling, 2013). According to gene ontology study SPCOK3 is not associated with Negative
regulation of cell motility because it is associated with Hemostatic Risk Factors and Arterial
Thrombotic Disease (Reiner,2001) and MFC2C negative regulation of blood vessel
endothelial cell migration (Schechter DS et. al., 2017). Cellular response to transforming
growth factor beta stimulus DUSP15 which is associated with ADHD is identified as a key
regulator gene for oligodendrocytes differentiation which is associated with autism(Tian Y et.
al.,2017). HTR3A gene involved in Autism is associated with regulation of membrane
potential according to gene ontology annotation but it is associated with suicidal
behaviour(Souza et. al., 2011). LTBP4 is associated with transforming growth factor beta

receptor signalling pathway and leads to kidney disease

(https://maayanlab.cloud/Harmonizome/gene_set/Kidney+Diseases/CTD+Gene-
Disease+Associations)

Negative correlation of the finding:

Neurobiological, genetic, and imaging data provide strong evidence for the CNTNAP2 gene
as a risk factor for ASD and related neurodevelopmental disorders (Pefiagarikano et.
al.,2012). Negative regulation of cell mobility DAG1 gene responsible for DMD is associated
based on gene ontology study, Negative correlation of MEF2C gene responsible for Autism is
a Gene to cellular response to transforming growth factor beta stimulus based on gene
ontology study online tool mismatches with the findings.

Code Repository:



Github Repository of the Project: angayarkannipitchumani/DeepLearning-for-NDD-

Classification

Recommendations:

Electronic health record pertaining to the on medical profiles and diagnostic testing like

patient’s profile, vital signs, systems review, clinical impression and diagnosis, medical

orders and disposition, if made available in the public repository for NDD it will help in

identifying the major cause.

Due to the very complex nature of NDDs, interdisciplinary approaches combining

genetics, functional genomics, robust biological models and objective measures of

response, such as biomarkers, as well as the capability of researchers and clinicians to

work side by side, will be essential.
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